期刊文献+

一种改进的聚类和孤立点检测算法 被引量:1

A Improved Clustering and Outlier Detection Algorithm
下载PDF
导出
摘要 对基于距离的聚类及基于密度的孤立点检测方法进行了分析研究,提出了一种基于距离和密度的聚类和孤立点检测算法DDBCOD。该算法根据距离和密度阈值对数据进行聚类,并发现数据中的孤立点。实验表明,该算法能够识别任意形状的聚类,对高维数据有效,能够很好地识别出孤立点。 Clustering and outlier detection methods are analyzed briefly.A distance density-based clustering and outlier detection algorithm(DDBCOD) is proposed.In it records the datum points by distance and density threshold,and identifies outliers by density threshold.As shown in the experimental results,the DDBCOD algorithm can cluster the dataset properly,it can discover clusters of arbitrary shapes,it is valid for high dimension dataset,and it can find outliers accurately and validly.
出处 《科学技术与工程》 2010年第22期5412-5416,共5页 Science Technology and Engineering
基金 河南省自然科学基金(0111051200) 河南省教育厅自然科学研究计划项目(2008B520016)资助
关键词 聚类分析 孤立点 距离 密度 clustering analysis outlier distance density
  • 相关文献

参考文献4

  • 1范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 3Garai G,Chaudhuri B B.A novel genetic algorithm for automatic clustering.Pattern Recognition Letters,2004;25(2):173-187.
  • 4Hsu Chihming,Chen Mingsyan.Subspace clustering of high dimensional spatial data with noise:advanced in knowledge discovery and data mining:8th Pacific-Asia Conference.Berlin:Springer,2004:3056:31-40.

二级参考文献9

  • 1JiaweiHan MichelineKamber 范明 孟小峰 译.数据挖掘概念与技术[M].北京:机械工业出版社,2002..
  • 2E M Knorr,R T Ng,V Tucakov. Distance-Based Outliers :Algorithms and Applications[J].VLDB Journal:Very Large Databases,2000:237~253
  • 3S D Bay,M Schwabacher. Mining Distance-Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule[C].In:SIGKDD '03, Washington, DC, USA ,2003
  • 4J Laurikkala,M Juhola,E Kentala. Informal Identification of Outliers in Medical Data[C].In :5th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology, (IDAMAP-2000) ,2000
  • 5K Yamanishi,J Takeuchi.A Unifying Framework for Detecting Oulliers and Change Points from Non-Stationary Time Series Data[C].In:SIGKDD '02 Edmonton,Alberta,Canda,2002
  • 6S Ramaswamy,R Rastogi,K Shim. Efficient Algorithms for Mining Outliers from Large Data Sets[C].In:Proceedings of the ACM SIGMOD Conference, 2000: 473~438
  • 7Wen Jin,K H Tung,Jiawei Han. Mining Top-n Local Outliers in Large Databases[C].In:KDD 2001 San Francisco,California USA
  • 8F Angiulli,C Pizzuti.Fast Outlier Detection in High Dimensional Spaces[C].In:Proccedings of the Sixth European Conference on the Principles of Data Mining and Knowledge Discovery,2002:15~16
  • 9NHL data.http://moo. Hawaii.edu: 1749/hockey/hockey.html

共引文献106

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部