期刊文献+

煤矿环境探测机器人航位研究 被引量:1

Air Spaces Research of Coal Mine Environment Detection Robot
下载PDF
导出
摘要 为了提高煤矿环境探测机器人的导航和定位性能,结合煤矿特殊的环境条件,采用惯性测量单元、电子罗盘和履带轴角编码器组合的导航方式,并通过对航向角、俯仰角和横滚角的修正,提高了机器人的定位和导航性能。 In order to improve the coal mine environment detection robot's ability of navigation and location, combine with the special environmental conditions in mining, this article uses the navigation mode of combination of inertial measurement unit , electronic compass and track shaft encoder, and amends the heading angle, pitch angle and roll angle, so the robot's positioning and navigation performance get improved.
出处 《煤矿机械》 北大核心 2010年第9期49-50,共2页 Coal Mine Machinery
关键词 煤矿 环境探测 机器人 导航 coal mine environment exploration robot navigation
  • 相关文献

参考文献4

二级参考文献26

共引文献158

同被引文献16

  • 1王勇,朱华,王永胜,程刚,李允旺.煤矿救灾机器人研究现状及需要重点解决的技术问题[J].煤矿机械,2007,28(4):107-109. 被引量:69
  • 2余洪山,王耀南.基于粒子滤波器的移动机器人定位和地图创建研究进展[J].机器人,2007,29(3):281-289. 被引量:14
  • 3厉茂海,洪炳熔,罗荣华.用改进的Rao-Blackwellized粒子滤波器实现移动机器人同时定位和地图创建[J].吉林大学学报(工学版),2007,37(2):401-406. 被引量:32
  • 4Kortenkamp D, Bonasso R P, Murphy R. AI-based mobile robots., case studies of successful robot systems[M]. Cambridge : MIT Press, 1998.
  • 5Daum F. Nonlinear filters: beyond the Kalman filter[J]. IEEE Aerospace and Electronic Systems Magazine, 2005,20 (8) : 177-183.
  • 6Dissanayake G,Newman P,Clark S,et al. A solution to the simultaneous localization and map building(SLAM) problem [J]. IEEE Transactions on Robotics and Automation, 2001,17 (3) : 229-241.
  • 7Holmes S A,Klein G,Murray D W. An O(N2 ) square root unscented Kalman filter for visual simultaneous localization and mapping [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31 (7): 1251-1263.
  • 8Montemerlo M,Thrun S,Koller D, et al. FastSLAM : A factored solution to the simultaneous localization and mapping problem [C]// Proceedings of the National Conference on Artificial Intelligence,Jul.y 28- August 1, 2002, Cambridge, MA, USA. Massachusetts: MIT Press, 2002 : 593-598.
  • 9Montemerlo M, Thrun S, Koller D, et al. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges [C] // Proceedings of the International Conference on Artificial Intelligence, August 9-15, 2004, Acapulco, Mexico. Piscataway.. IEEE Press, 2003:1151-1156.
  • 10Dong J F,Wijesoma W S,Shacklock A P. An efficient rao- blackwellized genetic algorithmic filter for SLAM [C]// Proceedings of 2007 IEEE International Conference on Robotics and Automation, April 10-14,2007, Roma, Italy. Piscataway: IEEE Press, 2007 : 2427-2432.

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部