期刊文献+

差分进化算法在电力系统环境经济调度中的应用 被引量:17

Application of differential evolution algorithm to environmental/economic dispatch of power systems
原文传递
导出
摘要 以求解环境经济调度(EED)这一复杂的多目标约束优化问题为背景,研究了一种改进的多目标差分进化算法(EMODE),该算法依据多目标优化问题的特点重新设计了差分进化算法(DE)的进化算子并引入自适应二次变异算子来有效避免DE存在的'早熟'收敛现象;同时,针对EED问题约束条件复杂且难以处理这一问题,依据不同类型约束的特点提出一种启发式的约束处理方法.将EMODE应用到某电力系统的多目标环境经济调度中,仿真计算结果以及与其他求解方法的对比分析表明,EMODE可以有效兼顾全局收敛性和Pareto非劣调度方案的多样性,具有较高的效率以及鲁棒性. Environmental/economic dispatch (EED) which is a complicated multi-objective constrained problem. An enhanced multi-objective differential evolution algorithm (EMODE) is proposed to solve that problem. The proposed algorithm redesigns the evolutionary operator of differential evlution (DE) and adopts a second mutation operator to mutate individuals during the computing process to avoid premature convergence. Meanwhile, in view of the difficulties of handling the complicated constraints of EED problem, a new constraints handle method is presented. The proposed algorithm is applied to solve the EED problem of a power system, experimental results demonstrate the successful application of EMODE, compared with other methods, EMODE outperforms in globe convergence and the diversity of the Pareto set with higher effectiveness and robustness.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第8期121-124,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家科技支撑计划重大项目(2008BAB29B08) 科技部水利部公益性行业专项科研基金资助项目(200701008) 国家重点基础研究计划资助项目(2007CB714107)
关键词 电力系统 多目标调度 差分进化 多目标进化算法 污染排放 全局最优 约束处理 power system multi-objective dispatch differential evolution algorithm multi-objective evolution algorithm emission issue global optimal constraints handle
  • 相关文献

参考文献8

  • 1杨朋朋,韩学山.一种考虑时间关联约束的安全经济调度解法[J].电力系统自动化,2008,32(17):30-34. 被引量:3
  • 2王民量,张伯明,夏清.考虑机组爬坡速率和网络安全的经济调度新算法[J].电力系统自动化,2000,24(10):14-20. 被引量:22
  • 3Rughooputh H C, Ah King. Environmental/econom ic dispatch of thermal units using an elitist muhiobjective evolutionary algorithm [C]// IEEE International Conference on Industrial Technology, Piscataway: IEEE, 2003: 48-53.
  • 4Abido M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms[J]. IEEE Trans on Power Systems, 2003, 18(4) : 1 529- 1 537.
  • 5Wang L F, Singh C. Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm[J].Electric Power System Research, 2007, 77(12) :1 654-1 711.
  • 6Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength pareto evolutionary algorithm, Technical Report 103[R]. Zurich: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), 2001.
  • 7Deb K, Pratab A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA2-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182 197.
  • 8Storn R, Price K, Minimizing the real functions of the ICEC'96 contest by differential evolution[C]// Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway: IEEE, 1996: 842-844.

二级参考文献22

  • 1VAN DEN BOSCH P P J. Optimal dynamic dispatch owing to spinning reserve and power-rate limits. IEEE Trans on Power Apparatus and Systems, 1985, 104(12): 3395-3401.
  • 2IRISARRI G, KIMBALL M, CLEMENTS A, et al. Economic dispatch with network and ramping constraints via interior point method. IEEE Trans on Power Systems, 1998, 13(1); 236- 242.
  • 3XIE K, SONG Y H. Optimal power flow with time-related constraints by a nonlinear interior point method// Proceedings of IEEE Power Engineering Society Winter Meeting: Vol 3, January 23-27, 2000, Singapore: 1751-1759.
  • 4HAN X S, GOOI H B. Effective economic dispatch model and algorithm. International Journal of Eleetrical Power and Energy Systems, 2007, 29(2): 113-120.
  • 5ENAMORADO J C, RAMOS A, GOMEZ T. Multi-area decentralized optimal hydro-thermal coordination by the DantzigWolfe decomposition method// Proceedings of IEEE Power Engineering Society Summer Meeting: Vol 4, July 16-20, 2000, Seattle, WA, USA: 2027-2032.
  • 6AGANAGIC M, MOKHTARI S. Security constrained economic dispatch using nonlinear Dantzig-Wolfe decomposition. IEEE Trans on Power Systems, 1997, 12(1) : 105-112.
  • 7YAN Xihui, QUINTANA V H. An infeasible interior-point algorithm for optimal power-flow problems. Electric Power Systems Research, 1996, 39(1):39-46.
  • 8WU Y C, DEBS A F, MARSTEN R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows. IEEE Trans on Power Systems, 1994, 9(2) : 876-882.
  • 9FU Yong, SHAHIDEHPOUR M, LI Zuyi. Long term security-constrained unit commitment: hybrid Dantzig Wolfe decomposition and subgradient approach. IEEE Trans on Power Systems, 2005, 20(4): 2093-2106.
  • 10AGUADO J A, QUINTANA V H. Inter-utilities powerexchange coordination: a market-oriented approach. IEEE Trans on Power Systems, 2001, 16(3): 513-519.

共引文献23

同被引文献161

引证文献17

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部