期刊文献+

A ferroelectric polyvinylidene fluoride-coated porous fiber based surface-plasmon-resonance-like gas sensor in the terahertz region

A ferroelectric polyvinylidene fluoride-coated porous fiber based surface-plasmon-resonance-like gas sensor in the terahertz region
原文传递
导出
摘要 In this paper, a ferroelectric polyvinylidene fluoride (PVDF)-coated porous polymer fiber based surface plasmon resonance (SPR)-like gas sensor is proposed theoretically in the terahertz (THz) region based on the total internal reflection (TIR). In such a sensor, the phase matching is achieved by changing the fiber parameters and the plasmon-like phenomenon at the interface between the ferroelectric polyvinylidene fluoride (PVDF) layer and the gaseous analyte is discussed. Using a fullvector finite-element method, the core-mode loss of the fiber is calculated to measure the resolution of the sensor. The amplitude resolution is demonstrated to be as low as 1.45 × 10-4 RIU, and the spectral resolution is 1.30 × 10-4 RIU in THz region, where RIU means the refractive index unit. In this paper, a ferroelectric polyvinylidene fluoride (PVDF)-coated porous polymer fiber based surface plasmon resonance (SPR)-like gas sensor is proposed theoretically in the terahertz (THz) region based on the total internal reflection (TIR). In such a sensor, the phase matching is achieved by changing the fiber parameters and the plasmon-like phenomenon at the interface between the ferroelectric polyvinylidene fluoride (PVDF) layer and the gaseous analyte is discussed. Using a full- vector f'mite-element method, the core-mode loss of the fiber is calculated to measure the resolution of the sensor. The amplitude resolution is demonstrated to be as low as 1.45 × 10-4 RIU, and the spectral resolution is 1.30 × 10-4 RIU in THz region, where RIU means the refractive index unit.
作者 景磊 姚建铨
出处 《Optoelectronics Letters》 EI 2010年第5期321-324,共4页 光电子快报(英文版)
基金 supported by the Major State Basic Research Development Program of China (Nos.2010CB327801 and 2007CB310403)
  • 相关文献

参考文献15

  • 1B. Liedberg, C. Nylander and S. C. Rajian Sundstrom, Sens. Actuators 4, 299 (1983).
  • 2B. Liedberg, C. Nylander and S. C. Rajian Sundstrom, Biosens. Bioelectron. 10, 137 (1995).
  • 3J. Homola, S. S. Yee and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
  • 4P. Westphal and A. Bommann, Sens. Actuators B 84, 278(2002).
  • 5C. M. Wu andL. Y. Lin, Biosens. Bioeleetron. 20, 864 (2004).
  • 6C. C. Fong, Wo P. Lai, Y. C. Lcung, C.-L. Samuel Lo, M.S. Wong and M. Yang, Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1596, 95 (2002).
  • 7S. K. Arya, R. P. Solanki, P. R. Singh, M. K. Pandey, M. Datta and B.D. Malholra, Talanta 69, 918 (2006).
  • 8Alireza Hassani and Maksim Skorobogatiy, Optics Express 16, 20206 (2008).
  • 9Takehiko Hidaka, Journal of Lightwave Technology 23, 2469 (2005).
  • 10T. Furukawa. Phase Transitions 15, 143(1989).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部