期刊文献+

r=4的插值正交多小波的对称和平衡性的讨论

The Discussion of Balancing Property and Symmetry of r =4 Orthogonal Multiwavelets with Totally Interpolating
下载PDF
导出
摘要 首先利用正交多小波满足完全插值性的条件,给出了r=4的正交多小波矩阵滤波器满足的参数化形式.其次,根据矩阵滤波器满足对称的条件,可证明与r=2一样不存在对称的插值正交多尺度函数.最后,由上面的参数化形式,更进一步给出了当多小波满足一阶平衡时滤波器应满足的条件. In this paper,a parameterization formula of matrix filters when r = 4 was proposed using the conditions of orthogonal multiwavelets' totally interpolating. At first,by the symmetrical conditions of matrix filters it can prove no symmetrical and interpolating orthogonal multiscaling functions as the same as r =2 . Then, using above parameterization formula it fatherly presented additional conditions when multiwavelets satisfy one-order balancing property in an orthogonal multiwavelet system.
作者 杨玉花
出处 《佳木斯大学学报(自然科学版)》 CAS 2010年第4期583-586,共4页 Journal of Jiamusi University:Natural Science Edition
基金 淮阴师范学院青年教师基金(08HSQNK003)
关键词 多小波 对称性 一阶平衡性 完全插值性 multiwavelet symmetry one-order balancing totally interpolating
  • 相关文献

参考文献9

  • 1Goodman T N, Lee S L. Wavelets of Multiplicity r[J]. Trans Amer Math Soc, 1994, 342(3) ,307 -324.
  • 2Chui C K, Lian J. A Study of Orthogonal Multi -wavelets[ J]. Appl Numer Math, 1996, 20(3 ) ,273 -298.
  • 3Lebrun J, Vetterli M. Balanced Multiwavelets Theory and Design[J]. IEEE Trans on Signal Processing, 1998, 46(4), 1119 -1124.
  • 4Selesnick I W. Muhiwavelet Bases with Extra Approximation Properties [ J]. IEEE Trans Signal Processing, 1998, 46 (11 ), 2898 - 2909.
  • 5Selesnick I W. Interpolating Multiwavelet Bases and the Sampiing Theorem[J]. IEEE Trans Signal Processing, 1999, 47 (6) ,1615 - 1621.
  • 6杨守志.紧支撑正交插值的多小波和多尺度函数[J].数学学报(中文版),2005,48(3):565-572. 被引量:11
  • 7Zhang J K. Design of Interpolating Biorthogonal Muhiwavelet Systems with Gompact Support[ J]. Appl and Comput Harmon Anal, 2001,11,420 -438.
  • 8Zhou D X. Interpolatory Orthogonal Multiwavelets and Reflnable Functions[ J]. IEEE Trans on Signal Processing, 2002, 50 (3), 520 -527.
  • 9Plonka G, Strela V. Construction of Multiscaling Functions with Approximation and Symmetry[J]. SIAM J Math Anal, 1998, 29,481 - 450.

二级参考文献20

  • 1Shen Z. W., Refinable function vectors, SIAM J. Math. Anal., 1998, 29: 235-250.
  • 2Cabrelli C., Heil C., Molter U., Accuracy of lattice translation of several multidimensional refinable function,J. Approx. Theory, 1998, 95: 5-52.
  • 3Lagarias J. C., Wang Y., Orthogonality criteria for compactly supported refinable functions and refinable function vectors, J. Fourier Anal. Appl., 2000, 6: 153-170.
  • 4Yang S. Z., A fast algorithm for constructing orthogonal multiwavelets, Anziam Journal, 2004, 46: 185-202.
  • 5Jia R. Q., Vector subdivision schemes and multiple wavelets, Math. Comput., 1998, 67: 1533-1563.
  • 6Bi N., Dai X., Sun Q., Construction of compactly supported M-bank wavelets, Appl. Comput. Harmonic Anal., 1999, 6: 113-131.
  • 7Sun Q., M-band scaling functions with minimal supported are asymmetric, Appl. Comput. Harmonic Anal.,2002, 12: 166-170.
  • 8Han B., Symmetric orthonormal scaling functions and wavelets with dilation factor 4, Adv. Compt. Math.,1998, 8: 221-247.
  • 9Jiang Q. T., Parameterization of M-channel orthogonal multiwavelets banks, Adv. Comp. Math., 2000, 12:189-211.
  • 10Lian J., Orthogonal criteria for multiscaling functions, Appl. Comp. Harm. Anal., 1998, 5: 277-311.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部