期刊文献+

基于LMD与神经网络的滚动轴承故障诊断方法 被引量:64

Roller bearing fault diagnosis method based on LMD and neural network
下载PDF
导出
摘要 针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再选取包含主要故障信息的PF分量进行进一步分析,从这些分量中提取时域统计量和能量等特征参数作为神经网络的输入参数来识别滚动轴承的故障类别。通过对滚动轴承正常状态,内圈故障和外圈故障的分析,表明了基于LMD与神经网络的诊断方法比基于小波包分析与神经网络的诊断方法有更高的故障识别率,同时也证明了该方法可以准确、有效地对滚动轴承的工作状态和故障类型进行分类。 A roller bearing fault diagnosis method based on local mean decomposition (LMD) and neural network was proposed to deal with the non-stationary vibration signal from fault roller bearings.First of all,LMD method was applied to decompose the original signals into a finite number of product functions (PFs),then several PFs containing main fault information were selected for further analysis;subsequently,energy and time domain statistic feature parameters extracted from PFs were served as input parameters of neural network to identify fault patterns of roller bearing.The analysis results from roller bearing signals with inner race and outer race faults show that the diagnosis method based on LMD and neural network can identify roller bearing fault patterns accurately and effectively and is superior to that based on wavelet packet analysis and neural network.
出处 《振动与冲击》 EI CSCD 北大核心 2010年第8期141-144,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50775068) 湖南省博士后科学基金(2008RS4004)
关键词 滚动轴承 LMD 神经网络 故障诊断 特征参数 roller bearing LMD neural network fault diagnosis feature parameter
  • 相关文献

参考文献16

  • 1Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform [ J ]. Mechanical Systems and Signal Processing, 2003, 17(4) : 787 -804.
  • 2Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform[ J]. Mechanical Systems and Signal Processing, 2002, 16(2 -3) : 447 -457.
  • 3Classen T, Mecklenbrauker W. The aliasing problem in discrete-time Wigner distribution[ J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31 (5) : 1067 - 1072.
  • 4Lee J H, Kim J, Kim H J. Development of enhanced Wigner- Ville distribution function [ J ]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367 - 398.
  • 5Cohen L. Time-frequency distribution-a review [ A ]. Proceedings of the IEEE, 1989, 77(7) : 941 -981.
  • 6Mallat S. A theory for multi-resolution decomposition, the wavelet representation [ J]. IEEE Trans. P. A. M. I. , 1989, 11(7) :674 -689.
  • 7Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. Lond. A, 1998, 454:903-995.
  • 8Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum[J]. Annu. Rev. Fluid Mech. , 1999, 31:417 -457.
  • 9程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 10Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify nearfault ground-motion characteristics and structural response [J]. Bulletin of the Seismological Society of American, 2001,91(5) : 1339 - 1357.

二级参考文献12

  • 1王延春,谢明,丁康.包络分析方法及其在齿轮故障振动诊断中的应用[J].重庆大学学报(自然科学版),1995,18(1):87-91. 被引量:25
  • 2于波,陈涛,刘建,李鹏斌.辊压机水泥粉磨技术的研究及应用[J].新世纪水泥导报,2005,11(5):1-4. 被引量:5
  • 3[1]Randall R B. A new method of modeling gear faults. ASME Journal of Mechanical Design, 1982, 104:259~267
  • 4[2]Radcliff G A. Condition monitoring of rolling element bearings using the enveloping technique. Machine Cond- ition Monitoring, Mechanical Engineering Publication Ltd., London:1990:55~67
  • 5[6]Randall R B. Hilbert transform techniques in machine diagnostics. In:IFToMM International Conference on Rotor dynamics, Tokyo, 1986:409~420
  • 6[7]Petros M, James F K, Thomas F Q. On amplitude and frequency demodulation using energy operator. IEEE Transactions on Signal Processing, 1993, 41(4):1 532~1 550
  • 7[8]Alexandros P, Petros M. A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Signal Processing, 1994, 37(1):95~120
  • 8[9]Petros M, James F K, Thomas F Q. Energy separation in signal modulations with application to speech analysis. IEEE Transactions on Signal Processing, 1993, 41(10): 3024~3051
  • 9[12]Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 1998, 454:903~995ITS APPLICATION IN MECHANICAL FAULT DIAGNOSIS
  • 10刘红星,陈涛,屈梁生,李振武,于立柱.能量算子解调方法及其在机械信号解调中的应用[J].机械工程学报,1998,34(5):85-90. 被引量:15

共引文献173

同被引文献550

引证文献64

二级引证文献545

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部