期刊文献+

一种选取线性不适定问题正则化参数的迭代算法

An Iterative Algorithm for Choosing the Regularization Parameter in Linear Ⅲ-posed Problem
下载PDF
导出
摘要 考虑利用Tikhonov正则化方法求解线性不适定问题。基于吸收Morozov相容性原理,提出了一种新的选取正则化参数的迭代算法。该算法简单易实现且具有全局收敛性。给出了算法的收敛性分析,并通过数值算例说明了其数值有效性。 Considering solving the linear ill-posed problem by Tikhonov regularization,we propose a new iterative algorithm for choosing the regularization parameter based on the damped Morozov discrepancy principle.This algorithm is easy to implement and has global convergence.We give its convergence analysis,and show the numerical validity by numerical examples.
作者 徐会林
机构地区 东南大学数学系
出处 《江西科学》 2010年第4期425-428,465,共5页 Jiangxi Science
关键词 不适定问题 TIKHONOV正则化方法 正则化参数 迭代算法 收敛性 Ⅲ-posed problem Tikhonov regularization Regularization parameter Iterative algorithm Convergence
  • 相关文献

参考文献11

  • 1Kirsch A.An Introduction to the Mathematical Theory of Inverse Problems[M].New York:Springer-Verlag,1996.
  • 2Morozov V A.Methods for Solving Incorrectly Posed Problems[M].New York:Springer-Verlag,1984.
  • 3Golub G H,Heath M,Wahba G.Generalized cross-validation as a method for choosing a good ridge parameter[J].Technometrics,1979,21:215-223.
  • 4Hansen P C.Analysis of discrete Ⅲ-posed problems by means of the L-curve[J].SIAM Rev.,1992,34:561-580.
  • 5Groetsch C W.The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind[M].London:Pitman,1984.
  • 6Kunisch K,Zou J.Iterative choices of regularization parameters in linear inverse problems[J].Inverse Problems,1998,14:1247-1264.
  • 7Xie J L,Zou J.An improved model function method for choosing regularization parameters in linear inverse problem[J].Inverse Problems,2002,18:631-643.
  • 8Wang Z W,Liu J J.New model function methods for determining regularization parameters in linear inverse problems[J].Applied Numerical Mathematics,2009,59:2489-2506.
  • 9Kunisch K.On a class of damped Morozov principle[J].Computing,1993,50:185-198.
  • 10Liu J J.Numerical solutions of forward and backward problem for 2-D heat conduction equation[J].J.Comput.Appl.Maths.,2002,145:459-482.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部