期刊文献+

基于多网络模型的工程机械液压系统故障诊断研究 被引量:14

Fault diagnosis of construction machinery hydraulic system based on multi-network model
下载PDF
导出
摘要 提出一种针对工程机械液压系统的多网络模型的故障诊断方法。该网络模型以广义回归神经网络(General regression neural network,GRNN)为基础,引入全局递归的反馈机制,构建动态GRNN模型。该方法首先为多个目标故障建立同等数量的动态GRNN目标故障模型,计算每个目标故障模型的检测阈值;然后,将测试故障样本代入每个目标故障模型中,当其残差平方和在对应阈值范围内即可确定故障类型。实验结果表明:多网络模型的故障诊断方法准确地诊断出95%以上的系统故障。 A fault diagnosis approach of construction machinery hydraulic system based on multi-network model was proposed.A dynamic general regression neural network(GRNN) model was established by introducing the global feedback to the GRNN.As a dynamic model with global recursion,dynamic GRNN model is feasible to identify nonlinear system.Firstly,multiple dynamic GRNN model was established for multiple target faults and a test threshold for each dynamic GRNN model was computed.Secondly,the sum of residuals’ square was developed to test model’s residual so as to determine the fault type.The results show that the test faults of 95% are correctly identified.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期1385-1390,共6页 Journal of Central South University:Science and Technology
基金 国家高技术研究发展计划("863"计划)项目(2003AA430200) 湖南省教育厅科研基金资助项目(09C075) 长沙理工大学"湖湘学者"资助项目(200807)
关键词 液压系统 工程机械 故障诊断 多模型故障诊断 广义回归神经网络 hydraulic system construction machinery fault diagnosis multi-model fault diagnosis general regression neural network(GRNN)
  • 相关文献

参考文献17

  • 1何清华,张大庆,郝鹏,朱建新.液压挖掘机工作装置模型及控制的试验研究[J].中南大学学报(自然科学版),2006,37(3):542-546. 被引量:19
  • 2HE Qing-hua,HE Xiang-yu,ZHU Jian-xin.Fault detection of excavator's hydraulic system using dynamic principal component analysis[J].Journal of Central South University of Technology,2008,15:700-705.
  • 3Cigizoglua H K,Alpb M.Generalized regression neural network in modeling river sediment yield[J].Advances in Engineering Software,2006,37:63-68.
  • 4Lee W Y,House J M,Kyong N H.Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks[J].Applied Energy,2004,77(12):153-170.
  • 5Ben-Nakhi A E,Mahmoud M A.Cooling load prediction for buildings using general regression neural networks[J].Energy Conversion and Management,2004,45:2127-2141.
  • 6Hansen J V.Learning experiments with genetic optimization of a generalized regression neural network[J].Decision Support Systems,1996,18(3):317-325.
  • 7Marcu T,K(o)ppen-Seliger B,Stücher R.Design of fault detection for a hydraulic looper using dynamic neural networks[J].Control Engineering Practice,2008,16(2):192-213.
  • 8Govindhasamy J J,McLoone S F,Irwin G W,et al.Neural modelling,control and optimisation of an industrial grinding process[J].Control Engineering Practice,2005,13(10):1243-1258.
  • 9Skoundrianos E N,Tzafestas S G.Finding fault:Fault diagnosis on the wheels of a mobile robot using local model neural networks[J].IEEE Robotics & Automation Magazine,2004,9:83-90.
  • 10Wong C X,Worden K.Generalised NARX shunting neural network modelling of friction[J].Mechanical Systems and Signal Processing,2007,21(1):553-572.

二级参考文献13

  • 1张大庆,郝鹏,何清华,施圣贤.液压挖掘机铲斗轨迹控制[J].建筑机械,2005,25(1):61-63. 被引量:13
  • 2Haga M,Hiroshi W,Fujishina K.Digging control system for hydraulic excavator[J].Mechatronics,2001,11(6):665-676.
  • 3Bradley D,Seward D.The development,control and operation of an autonomous robotic excavator[J].Journal of Intelligent and Robotic Systems,1998,21(1):73-97.
  • 4Budny E,Chlosta E,Gutkowski W.Load-independent control of a hydraulic excavator[J].Automation in Construction,2003,12(3):245-254.
  • 5Ha Q P,Nguyen Q H,Rye D C,et al.Impedance control of a hydraulically actuated robotic excavator[J].Automation in Construction,2000,9(5 -6):421-435.
  • 6Nguyen Q H,Ha Q P,Rye D C,et al.Force/position tracking for electrohydraulic systems of a robotic excavator[C]//IEEE Conference on Decision and Control.Piscataway:IEEE,2000:5224-5229.
  • 7Bu F,Yao B.Nonlinear adaptive robust control of hydraulic actuators regulated by proportional directional control valves with dead band and nonlinear flow gains[C]//Proceedings of the American Control Conference.Chicago:American Autom Control Council,2000:4129-4133.
  • 8LEE Soo-jin,CHANG Pyung-hun,Kwon Youngmin.An experimental study on cartesian tracking control of automated excavator system using TDCbased robust control design[C]//Proceeding of the American control conference.San Diego:American Autom Control Council,1999:3180-3185.
  • 9Nguyen H Q.Robust low level control of robotic excavation[D].Sydney:University of Sydney,2000.
  • 10Yao B.High performance adaptive robust control of nonlinear systems:a general framework and new schemes[C]//Proceeding of IEEE Conference on Decision and Control.Sam Diego:IEEE,1997:2489 -2494.

共引文献18

同被引文献182

引证文献14

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部