期刊文献+

电子装备故障预测参数选取与设置 被引量:7

Fault Prognosis Parameters Selection and Setting in Electronic Equipment
下载PDF
导出
摘要 电子装备的故障预测是飞机预测与健康管理系统的关键技术。针对电子装备故障预测参数选取和设置的难题,提出了一种故障预测参数选取和设置的新方法。首先基于多信号流图模型,提取反映电子装备故障状态的参数集;通过引入生物统计学中相关危险度,作为统计模型标准,采用数据驱动的方法,选取出最优故障预测参数。通过建立预测参数门限值统计模型趋势图,获得置信度为95%的门限估计值。实例证明通过该方法可快速有效地选取和设置预测参数,同时避免了繁琐的故障模式、故障状态和故障判据的分析,以及主观因素影响,实现预测参数选取和设置的自动化。 Fault prognosis is the key technique of PHM(Prognostic and Health Management).Aimed at the difficult problems of parameters selection and setting in fault prognosis of electronic equipment,the paper proposes a new method of parameters selection and setting in fault prognosis.Firstly,the parameter set which can reflect fault state of electronic equipment is extracted by using the multi-signal flow graphs model.By introducing the relative risk of biostatistics,the optimized parameters of fault prognosis are selected by using the data-driven method.The prognostic parameter threshold in the confidence level of 95% is got by building statistical model trend graph.The experiment validates that the optimized prognostic parameters can be quickly and effectively selected and set by the proposed method.Simultaneously the complicated analyses of fault mode,fault state,fault diagnosing bases and the influence pf subjective factors are avoided.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2010年第4期11-15,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国防预研基金资助项目(51317030103)
关键词 故障预测 相关危险度 预测度 多信号流图 fault prognosis relative risk prognostic scale multi-signal flow graph
  • 相关文献

参考文献12

  • 1Jarrell D,Bond L.Physics-based Prognostics for Optimizing Plant Operations[J].Sound and Vibration,2006(2):12-15.
  • 2Byington C S.Improving the Maintenance Process and Enabling Prognostics for Control Actuators using CAHM Software[C] //2006 IEEE Aerospace Conference.Piscataway,New Jersey:IEEE Press,2006,8-10.
  • 3Kothamasu R,Huang S H,Verduin W H.System Health Monitoring and Prognostics--A Review of Current Paradigms and Practices[J].International Journal of Advanced Manufacturing Technology,2006,28(9):1012-1024.
  • 4Jaw J.Recent Advancements in Aircraft Engine Health Management (EHM) Technologies and Recommendations for the Next Step[C] //Proceedings of Turbo Expo 2005.Reno-Tahoe,Nevada:50th ASME International Gas Turbine & Aeroengine Technical Congress,2005:1-13.
  • 5Kirkland L,Pombo T,Nelson K,et al.Berghout Avionics Health Management:Searching for the Prognostics Grail[C] //Proceedings of the IEEE Aerospace Conference.Maryland:IEEE Press,2004:3448-3454.
  • 6Vichare N,Pecht M.Prognostics and Health Management of Electronics[J].IEEE Transactions on Components and Packaging Technologies,2006,29(1):222-229.
  • 7Boodhansingh Anthony J,Kalgren Patrick W.Antonio Ginart:Power Supply Health Management-Deploying Prognostics Technology for Enhanced Weapon System Depot Support[C] //IEEE Aerospace and Electronic System Society IEEE Autotestcon Proceedings.Salt Lake City:IEEE Press,2008:104-109.
  • 8Cheng Shunfeng,Pecht Michael.A Fusion Prognostics Method for Remaining Useful Life Prediction of Electronic Products[C] //5th Annual IEEE Conference on Automation Science and Engineering.Bangalore,India:IEEE Press,2009:22-25.
  • 9Xie J,Pecht M.Applocation of In-situ Health Monitoring and Prognostic Sensors[C] // Proceedings of the 9th Pan Pacific Microelectronic Symp Exhibits Conference.Poland,Cracow:[s.n.] ,2004:1-6.
  • 10Deb S,Pattipati K R,Raghavan V,et al.Multi-signal Flow Graphs:A Novel Approach for System Testability Analysis and Fault Diagnosis[J].IEEE AES System Magazine,1995(5):14-25.

共引文献1

同被引文献71

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部