期刊文献+

中国股票市场分形与混沌特征:1994~2008 被引量:14

The Fractal and Chaos Characteristics of Chinese Stock Markets:1994~2008
原文传递
导出
摘要 用R/S分析法得出上海股市对数收益序列的Hurst指数为0.6474,说明上海股市系统存在分形特征,存在大约一年半的长期记忆性的循环周期;用相空间重构法求得上海股市吸引子的维数收敛于1.355,说明上海股市具有混沌特性,建立上海股市的动力学系统至少需要两个变量;系统的最大Lyapunov指数为0.003,佐证了R/S分析得出的上海股市存在一个大约一年半的循环周期的结论;主成量分析法的使用支持系统具有混沌特性的结论。上海股市的分形和混沌特性揭示了中国股市的非线性本质,以非线性观为指导更有利于制定有利于发展股市的对策。 We get the Hurst exponent of shanghai stock market's Logarithmic return series which is about 0.6474 by R/S analysis method,showing that shanghai stock market system has fractal characteristics and about one and a half years' cycle of long memory.By using the method of re-contraction of phase space we find that Shanghai Stock attractor dimension converges to 1.355,which means that Shanghai stock market has chaos characteristics,and that at least two variables are needed to establish dynamic system of the Shanghai stock market.The max Lyapunov index of System is 0.003,which corroborates the one and a half years' cycle of long memory,the result of R/S analysis.The result of amount of the principal component analysis supports the Chaos feature of Shanghai Stock Market. The fractal and chaotic characteristics of Shanghai stock market reveals the nonlinear nature of Chinese stock markets,which is conducive in working out countermeasures to develop Chinese stock markets from a non-linear perspective.
出处 《系统工程》 CSSCI CSCD 北大核心 2010年第6期30-35,共6页 Systems Engineering
基金 国家自然科学基金资助项目(70971013) 国家社科基金资助项目(08AJY008) 湖南省杰出青年基金资助项目(09JJ1010) 湖南省教育厅创新平台项目(09K064)
关键词 分形 混沌 R/S分析法 相空间重构 Fractals Chaos R/S Analysis Method Reconstructions of Phase Space
  • 相关文献

参考文献23

  • 1Mandelbrot B. The fractal geometry of nature[M]. New York : W. H. Freeman, 1982.
  • 2Peters E E. A chaotic attractor for the S&P 500[J].Financial Analysts Journal, 1991,47(2) : 55-62.
  • 3王鹏,魏宇.金融市场的多分形特征及与波动率测度的关系[J].管理工程学报,2009,23(4):166-169. 被引量:8
  • 4郑丰,张润彤,何凌云,田志勇.沪、深股市综合指数分形特征及长期记忆研究[J].北京交通大学学报(社会科学版),2008,7(1):70-74. 被引量:6
  • 5范英,魏一鸣.基于R/S分析的中国股票市场分形特征研究[J].系统工程,2004,22(11):46-51. 被引量:52
  • 6Yoon S-M, et al. Non-periodic cycles and long memory property in the Korean stock market[J]. The Journal of the Korean Economy, 2008, 9 (3): 403-424.
  • 7ASHOK RAZDAN. Scaling in the Bombay stock exchange index [J]. Indian Journal of Physics, 2002,58 (3) : 537 - 544.
  • 8Barkoulas J T, et al. Long memory in the Greek stock market [J]. Applied Financial Economics, 2000,10(2) : 177-184.
  • 9Li T Y, Yorke J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10) :985-992.
  • 10Grassberger P, et al. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9 (1 - 2) : 189-208.

二级参考文献43

  • 1范英,魏一鸣.基于R/S分析的中国股票市场分形特征研究[J].系统工程,2004,22(11):46-51. 被引量:52
  • 2魏宇,黄登仕.基于多标度分形理论的金融风险测度指标研究[J].管理科学学报,2005,8(4):50-59. 被引量:39
  • 3刘洪,李必强.基于混沌吸引子的时间序列预测[J].系统工程与电子技术,1997,19(2):23-28. 被引量:29
  • 4宁妆新 徐弘山.机械制造中的CAD/CAM技术[M].北京:北京理工大学出版社,1991..
  • 5Lux T, Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market[J]. Nature, 1999, 397:498 - 502.
  • 6Bonanno G, Lillo F, Mantegna RN. Levels of complexity, in financial markets[J]. Physica A, 2001, 299: 16-27.
  • 7Wagner N, Marsh TA. Measuring tail thickness under GARCH and an application to extreme exchange rate changes[J]. Journal of Empirical Finance, 2005, 12(1): 165- 185.
  • 8Schmitt F, Schertzer D, Lovejoy S. Muhifractal fluctuations in finance[J]. Int J Theor Appl Fin, 2000, 3(3) : 361 - 364.
  • 9Sun X, Chen H, Wu Z, et al. Multifractal analysis of Hang Seng index in Hong Kong stock market[J]. Physica A, 2001, 291 : 553 - 562.
  • 10Lee JW, Lee KE, Rikvold PA. Multifraetal behavior of the Korean stock-market index KOSPI[J]. Physica A, 2006, 364:355 - 361.

共引文献142

同被引文献143

引证文献14

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部