期刊文献+

往复压缩机气阀早期故障的双演化遗传聚类检测 被引量:3

A Double Evolution Genetic Clustering Algorithm for Detection of Early Fault in Reciprocating Compressor Valve
下载PDF
导出
摘要 针对往复压缩机气阀早期故障的检测数据分布复杂,常规方法难以有效检测的问题,提出一种双演化遗传聚类检测算法。该算法引入测地线距离作为数据间关系测度,并将个体编码为代表各类别的典型样本序号的排列。基于生物进化系统的中自组织、自学习及自适应等复杂性,设计了相应的幂律选择算子、双演化交叉算子和种群的自适应更新策略来完成故障数据的聚类检测。将该算法用于两级往复压缩机气阀早期故障检测,试验结果表明,双演化遗传聚类算法。在对气阀早期故障的识别率上明显优于常用的K均值算法和遗传聚类算法,可应用到具有复杂数据分布的机电系统故障检测。 In consideration of the problem that the general clustering algorithm is ineffective in detection of reciprocating compressor early fault data with complex shape clusters,a novel double evolution genetic clustering algorithm is put forward in this work.The new approach employs geodesic distance to measure the similarity of data samples,and encodes each chromosome as a sequence of real integer numbers representing the cluster representatives.Based on the self-organizing,self-learning and self-adapting of evolution,a power law selecting operator,double evolution crossover operator and self-adapting generation strategy are designed to execute the clustering detection of fault data.The results of the experiments on early fault detection of reciprocating compressor's valve leakage show that the new algorithm is efficient and effective.Its performance of recognition is better than that of the K-means algorithm and generic genetic clustering algorithm,and can be adopted for detecting machine fault with complex data distribution.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2010年第4期384-388,共5页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(编号:50705073) 陕西省自然科学基础研究计划资助项目(编号:2007E224)
关键词 往复压缩机 故障检测 遗传算法 测地线距离 reciprocating compressor fault detection genetic algorithm geodesic distance
  • 相关文献

参考文献10

  • 1王发辉,刘秀芳,程艳霞.往复压缩机故障诊断研究现状及展望[J].压缩机技术,2007(2):45-48. 被引量:18
  • 2Elhaj M,Gub F,Ball A D,et al.Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring[J].Mechanical Systems and Signal Processing,2008,22:374-389.
  • 3Ren Quanmin,Ma Xiaojiang,Miao Gang.Application of support vector machines in reciprocating compressor valve fault diagnosis[C] //Proceeding of 1st International Conference on Nature Computation.Changsha:Springer-Verlag,2005:81-84.
  • 4Lin Y H,Wu H C,Wu C Y.Automated condition classification of a reciprocating compressor using time-frequency analysis and an artificial neural network[J].Smart Materials and Structures,2006,15:1578-1584.
  • 5刘树林,黄文虎,夏松波,陈业生.基于免疫机理的往复压缩机气阀故障检测方法[J].机械工程学报,2004,40(7):156-160. 被引量:20
  • 6赵俊龙,张志新,郭正刚,李宏坤,王奉涛.往复式压缩机气缸压力模拟曲线提取[J].振动.测试与诊断,2009,29(1):79-82. 被引量:13
  • 7Hruschka E R,Campello R J,Freitas A A,et al.A survey of evolutionary algorithms for clustering[J].IEEE Transactions on Systems,Man and Cybernetics,Part C:Applications and Reviews,2009,39(2):133-155.
  • 8Duda R O,Hart P E,Stork D G.Pattern classification[M].Beijing:China Machine Press,2004.
  • 9Schaeffer S E.Graph clustering[J].Computer Science Review,2007,1(1):27-64.
  • 10Maulic U,Bandyopadhyay S.Genetic algorithm-based clustering technique[J].Pattern Recognition,2000,33(9):1455-1465.

二级参考文献35

  • 1徐春广,王信义,肖定国.金属和非金属裂纹动态监测控制系统[J].仪器仪表与分析监测,1994(1):1-7. 被引量:4
  • 2石玉祥,韩军,张梅军.缸压振动信号的研究[J].振动.测试与诊断,1995,15(4):20-25. 被引量:2
  • 3李志勇,危韧勇,张涛.基于Morlet组合小波的梳状滤波与包络检波方法[J].中南大学学报(自然科学版),2006,37(2):336-340. 被引量:10
  • 4Elhaj M, Gu F, Ball A D, et al. Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring [J]. Mechanical Systems and Signal Processing, 2008,22 : 374-389.
  • 5Liu S L, Zhang J Z, Shi W G, et al. Negative-selection algo-rithm based approach for fault diagnosis of rotary machine-ry. In:Proceedings of American Control Conference. Anch-orage, Alaska, USA, 2002:3 955~3 960
  • 6Dasgupta D, Attohokine N. Immunity based systems:A survey. In:Proceedings of the International Conference on Systems, Man and Cybernetics. Orlando, FL, USA, 1997, 1:869~874
  • 7Forrest S, Perelson A, Allen L. Self-nonself discrimination in a computer. In:Proceedings of the IEEE Symposium on Resea-rch in Security and Privacy, Okaland, CA,USA, 1994:202~212
  • 8Gonzalez F, Dasgupta D. Neuroimmune and self-organizin-g map approach to detection:A comparison. In:Proceedin-gs of the 1st International Conference on Artificial ImmuneSystems. Canterbury, UK, 2002:9~11
  • 9Gonzalez F, Dasgupta D. An immunogenetic technique to detect anomalies in network traffic. In:Proceedings of the Genetic and Evolutionary Computation Conference. New York, USA, 2002:1 081~1 088
  • 10Castro L N, Timmis J. An artificial immune network formultimodal function optimization. In:Proceedings of IEEE International Conference on Evolutionary Computation.Honolulu, Hawaii, 2002:699~674

共引文献47

同被引文献21

  • 1王朝晖,姚德群,段礼祥.基于模糊聚类的油田往复压缩机气阀故障诊断研究[J].机械强度,2007,29(3):521-524. 被引量:22
  • 2Cui Houxi, Zhang Laibin, Kang Rongyu, et al. Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method [ J ] . Journal of Loss Prevention in the Process Industries, 2009, 22 : 864 - 867.
  • 3Stephane G M. A theory for multiresolution signal decomposition: The wavelet representation [ J ] . IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989, 11 (7): 674-693,.
  • 4Wen Bao, Rui Zhou, Jiangguo Yang, et al. Anti - aliasing lifting scheme for mechanical vibration fault feature extraction [J] . Mechanical System and Sibnal Processing, 2009, 23 : 1458 - 1473.
  • 5Kennel, Mathew B, Brown R, et al. Determining embedding dimension for phase - space reconstruction using a geometrical construction [J]. Phy Rev A, 1992, 45:3403-3411.
  • 6Yang Wenxian, Peter W. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition [ J ] . NDT and E International, 2003, 36 (6): 419-432.
  • 7GU Fengshou, SHAO Yimin. Motor current signal analysis using a modified bispectrum for machine fault diagnosis [ C ]//ICROS-SICE International Joint Conference. Fukuo- ka, Japan, 2009: 4890-4895.
  • 8EL-GHAMRY M H, REUBEN R L, STEEL J A. The devel- opment of automated pattern recognition and statistical fea- ture isolation techniques for the diagnosis of reciprocating machinery faults using acoustic emission [ J ]. Mechanical Systems and Signal Processing, 2003, 17(4) : 805-823.
  • 9CHEN Zhigang, LIAN Xiangjiao. Fault diagnosis for valves of compressors based on support vector machine[ C]//Chi- nese Control and Decision Conference. Xuzhou, China, 2010:1235-1238.
  • 10HUANG N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [ C ]//Proc R Soc Lond A. Greenbelt, USA, 1998, 454(4) : 903-955.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部