期刊文献+

面向制造的圆角特征选择性抑制识别的处理策略 被引量:7

Selectively inhibition and recognition treatment strategy of fillet oriented to manufacturing
下载PDF
导出
摘要 为了最大程度地保留零件模型信息,提出了一种面向制造的圆角特征处理策略.该策略将圆角特征分为抑制类与非抑制类,并采用不同的处理方法.处理过程包括圆角特征识别与分类、圆角抑制与恢复2部分:根据刀具接近方向识别出所有主加工面,再以主加工面为基础向周围搜索识别圆角过渡面,然后分析过渡面信息进而确定圆角特征类型;对抑制类特征进行抑制,对抑制后的模型进行特征识别,完成之后恢复抑制的圆角特征,并还原三维模型的原始结构,对非抑制特征不做任何处理.该处理策略简化了圆角特征的抑制过程,最大程度地保留了三维模型的特征信息,提高了特征识别的整体效率与准确性.最后,利用实例验证了该模型的正确性. In order to preserve the model information to a greatest degree,a fillet feature selectively inhibition and recognition strategy oriented to manufacturing is presented.Fillet feature is divided into two types: inhibition and non-inhibition,which are treated by two different methods.The process includes two parts,fillet recognition and classification,and fillet inhibition and recovery.All primary machining surfaces are identified under a tool closing direction,and the fillet transition surfaces are searched and identified based on the primary machining surface;fillet type is determined after analyzing the information of transition face.After suppressing the inhibition fillet feature,the manufacturing features of the 3D model are recognized,and then all of the fillet feature suppressed and the origin structure of 3D model would be recovered.There is no treatment for the non-inhibition fillet.The treatment strategy of fillet feature simplifies the suppression of fillet,preserves the feature information of 3D model to a greatest degree,and improves the overall efficiency and accuracy of feature recognition.Finally,a verification example is given.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期731-735,共5页 Journal of Southeast University:Natural Science Edition
基金 某部委预先研究资助项目(51318010304) 某部委基础科研资助项目(b1420080215) 南京市科技计划资助项目(软资-03027)
关键词 抑制类圆角特征 主加工面 广义夹角 圆角凹边 圆角凸边 inhibition fillet feature primary machining surface generalized angle fillet concave edge fillet convex edge
  • 相关文献

参考文献9

二级参考文献22

  • 1周雄辉,张申生,卫原平,阮雪榆.利用中间图形系统实现基于特征的信息建模[J].计算机工程,1994,20(5):34-37. 被引量:2
  • 2万立,陈月林,钟毅芳,周济.面向并行设计的启发式特征识别[J].华中理工大学学报,1995,23(7):87-90. 被引量:1
  • 3[1]VIDA J, MARTIN R R,VARADY T. A survey of blending methods using parametric surfaces[J].Computer-Aided Design, 1994,26(5):341-364.
  • 4[3]GAO S, SHAH J J. Automatic recognition of interacting machining features based on minimal condition subgraph[J]. Computer-Aided Design, 1998, 30(9):727-739.
  • 5[4]VENKATARAMAN S, SOHONI M. Blend recognition algorithm and applications[A]. Proceeding of Solid modeling[C]. 2001.99-108.
  • 6[5]VENKATARAMAN S, SOHONI M, RAJADHYAKSHA R. Removal of blends from boundary representation models[A]. Proceeding of Solidmodeling[C].Saarbrücken Germany:ACM Press,2002.83-94.
  • 7[6]LIM T,CORNEY J R,CLARK D E R.A laminae approach to constructing geometric feature volumes[A].Proceeding of Solid Modeling[C].Ann Arbor,Michigan,USA:ACM Press,2001.183-192.
  • 8Zhu H, Menq C H. B-Rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition [J]. CAD, 2002, 34: 109-123.
  • 9高曙明,Proc ASME Computers in Engineering,1997年,31页
  • 10Wu M C,Comput Aided Des,1996年,28卷,8期,606页

共引文献168

同被引文献72

  • 1王恒,宁汝新,唐承统.三维装配尺寸链的自动生成[J].机械工程学报,2005,41(6):181-187. 被引量:58
  • 2ZHOU Xionghui, QIU Yanjie, HUA Guangru, et al. A feasi-ble approach to the integration of CAD and CAPP[J]. Com-puter-Aided Design, 2007,39(4):324-338.
  • 3DING L, MATTHEWS J. A contemporary study into the ap-plication of neural network techniques employed to automateCAD/CAM integration for die manufacture[J]. Computers &-Industrial Engineering,2009,57(4) : 1457-1471.
  • 4BABIC B, NESIC N,MILJKOVIC Z. A review of automatedfeature recognition with rule-based pattern recognition [ J ].Computers in Industry, 2008*59(4) :321-337.
  • 5DONALDSON I A,CORNEY J R. Rule-based feature recog-nition for 2. 5d machined components[J]. International Journalof Computer Integrated Manufacturing, 1993*6( 1/2) :51-64.
  • 6LOC'KETT H L, GUENOV M D. Graph-based feature recog-nition for injection moulding based on a mid-surface approach[J]. Computer-Aided Design, 2005,37(2):251-262.
  • 7MOKHTAR A, XU X, LAZCANOTEGUI I. Dealing withfeature interactions for prismatic parts in STEP-NC[J]. Jour-nal of Intelligent Manufacturing, 2009,20(4) ;431-445.
  • 8HAN J H, PRATT M, RECAA W C. Manufacturing featurerecognition from solid models: a status report [J]. Ieee T rans-actions on Robotics and Automation, 2000,16(6) : 782-796.
  • 9W(X) Y, SAKURAI H. Recognition of maximal features byvolume decomposition[J]. Computer-Aided Design, 2002,34(3):195-207.
  • 10KAII.ASH S H, ZHANG Y F,FUH J Y H.A volume de-composition approach to machining feature extraction of cast-ing and forging components [ J ]. Computer-Aided Design,2001,33(8):605-617.

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部