期刊文献+

基于Boosting学习算法的雷达弹道识别 被引量:4

The Recognition of Radar Trajectory Based on the Boosting Learning Algorithms
下载PDF
导出
摘要 弹道外推技术在炮位雷达的侦察和校射中起关键作用,弹道外推的精度直接决定着炮位侦察校射雷达的性能。在文献[1]中,作者提出了将弹道外推分为弹道识别和特定弹道外推两个阶段,并用支持向量机方法对弹道识别进行了系统研究。文中引进Boosting学习算法进行弹道识别。仿真结果表明,基于决策树的Boosting学习算法是一种有效的弹道识别方法,并且识别精度高于基于核技巧的支持向量机方法。 Trajectory prediction plays a crucial role in reconnaissance and adjustment of radar, and the performance of radar for re- connaissance and adjustment is directly determined by its accuracy. In our paper [1], it was proposed that the stage of trajectory prediction can be divided into the recognition phase and prediction phase of specific trajectories, and the application of SVM in trajectory recognition was systematically investigated. In this paper, the Boosting classification technique was introduced to recognize the trajectories. Several experiments indicate that the efficient decision-tree-based Boosting algorithms reach higher precision than kernel-based SVM.
出处 《弹箭与制导学报》 CSCD 北大核心 2010年第4期193-196,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国家自然科学基金(60835002,60975040)资助
关键词 弹道外推 弹道识别 机器学习 支持向量机 BOOSTING traj ectory prediction trajectory recognition machine learning support vector machine Boosting
  • 相关文献

参考文献8

  • 1陶卿,刘欣,唐升平,丁永清.基于支持向量机的弹道识别及其在雷达弹道外推中的应用[J].兵工学报,2005,26(3):308-311. 被引量:11
  • 2刘欣,陶卿,唐升平,章显.一种基于SVM的炮位校射雷达弹道外推新方法[J].火力与指挥控制,2007,32(3):8-11. 被引量:5
  • 3Duda R O, Hart P E, Stork D G. Pattern classification [M]. Second Edition, John Wiley Sons, 2001.
  • 4Freund Y. Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995,121(2) : 256 --285.
  • 5Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistics view of boosting[J]. Annals of Statistics, 2000, 28(2): 337--407.
  • 6Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization[J].Annals of Statistics, 2004, 32(1):56--134.
  • 7R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing[M/OL]. Vienna, Austria, 2007. ISBN3--900051--07--0. http://www. R-project. org.
  • 8陶卿,那健,冯勇,刘欣.支持向量机弹道识别方法的精度分析[J].模式识别与人工智能,2009,22(3):494-498. 被引量:4

二级参考文献17

  • 1陶卿,刘欣,唐升平,丁永清.基于支持向量机的弹道识别及其在雷达弹道外推中的应用[J].兵工学报,2005,26(3):308-311. 被引量:11
  • 2刘欣,陶卿,唐升平,章显.一种基于SVM的炮位校射雷达弹道外推新方法[J].火力与指挥控制,2007,32(3):8-11. 被引量:5
  • 3Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: John Wiley Sons, 2001.
  • 4Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995.
  • 5Cristianini N, Sehawe-Taylor J. An Introduction to Support Vector Machines. Cambridge, UK: Cambridge University Press, 2000.
  • 6Tao Qing, Wang Jue. A New Fuzzy Support Vector Machine Based on the Weighted Margin. Neural Procession Letters, 2004, 20(3) : 139 - 150.
  • 7Tao Qing, Wu Gaowei, Wang Feiyue, et al. Posterior Probability Support Vector Machines for Unbalanced Data. IEEE Trans on Neural Networks, 2005, 16(6): 1561- 1573.
  • 8Tao Qing, Wu Gaowei, Wang Jue. A General Soft Method for Learning SVM Classifiers with L1-Norm Penalty. Pattern Recognition, 2008, 41(3) : 939 -948.
  • 9Tao Qing, Chu Dejun, Wang Jue. Recursive Support Vector Machines for Dimensionality Reduction. IEEE Trans on Neural Networks, 2008, 19( 1 ) : 189 - 193.
  • 10Vapnik V. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 1999 : 1 - 226.

共引文献12

同被引文献33

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部