期刊文献+

来流气流角变化对冲压叶栅性能的影响 被引量:6

INFLUENCE OF FLOW ANGLE ON THE SUPERSONIC CASCADE PERFORMANCE
原文传递
导出
摘要 本文研究的冲压叶栅基于激波增压这一思想,在冲压叶栅内组织了多道斜激波及一道结尾正激波,来实现叶栅的增压效应。采用雷诺平均N-S方程和Menter-SST湍流模型,对冲压叶栅的流场进行数值模拟。数值模拟结果表明,来流气流角在37°与49°之间变化时,冲压叶栅波系可以稳定存在,并且随着来流气流角增大,叶片通道内分离趋于严重,且有竹节波产生,使得叶栅流动分离损失及激波损失加剧,等熵效率降低。 A shock-in type supersonic compressor is designed based on the concept of shock compression. In order to obtain the pressure rise, several oblique shocks and one terminal normal shock are organized in the flow passage. In this paper, the influence of inlet flow angle on the rotor performance is analysed by numerical method. The Menter-SST turbulence model is applied to solve the RANS equations to simulate the flow field of this supersonic compressor. The simulation results indicate that the shock wave system can remain steady in the flow passage when the inlet flow angle is changed from 37 degree to 49 degree. As the inlet flow angle increases, the separation of boundary layer, which is induced by the terminal normal shock, gradually deteriorates, and causes intersection of the shock wave system. As a result, the separation and shock loss is increased and the isentropic efficiency is decreased.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第9期1484-1487,共4页 Journal of Engineering Thermophysics
基金 国家重点基础研究发展计划(973计划)(No.2010CB227302) 国家自然科学基金资助项目(No.50806074)
关键词 冲压叶栅 气流角 激波 数值模拟 supersonic cascade flow angle shock numerical simulation
  • 相关文献

参考文献8

  • 1Kantrowitz A. The Supersonic Axial-Flow Compressor [R]. NACA-Report 974, 1950.
  • 2Klapproth J F, Ullman G N, Tysl E R. Performance of an Impulse-Type Supersonic Compressor with Stators [R]. NACA RM 52B22, 1952.
  • 3Lawlor S P, Hinkey J B, Mackin S G. Henderson S, et al. Supersonic Compression Stage Design and Test Results [R]. ASME Paper IMECE2004-59914, 2004.
  • 4Steele R, Baldwin P, Kesseli J. Insertion of Shock Wave Compression Technology Into Micro Turbines for In- creased Efficiency and Reduced Costs [R]. ASME Paper GT2005-68203, 2005.
  • 5Shawn P Lawlor, Baldwin P. Conceptual Design of a Supersonic CO2 Compressor [R]. ASME Paper GT2005- 68349, 2005.
  • 6Grosvenor A D, Taylor D A, Bucher J R, et al. Measured and Predicted Performance of a High Pressure Ratio Supersonic Compressor Rotor [R]. ASME Paper GT2008- 50150, 2008.
  • 7肖翔,赵晓路,徐建中.高压比旋转冲压叶轮研究[J].工程热物理学报,2008,29(5):759-762. 被引量:16
  • 8HUANG D G. Preconditioned Dual-Time Procedures and Its Application to Simulating the Flow with Cavitations [J]. Journal of Computational Physic, 2007, 223(2): 685-689.

二级参考文献12

  • 1Weise A. Uberschallaxialverdichter. Bericht 171 der Lilient hal-Gesellschaft, 1943.
  • 2Kantrowitz A. The Supersonic Axial-Flow Compressor. NACA-Report 974, 1950.
  • 3Klapproth J F, Ullman G N, Tysl E R. Performance of an Impulse-Type Supersonic Compressor with Stators. NACA RM52B22, 1952.
  • 4Simon H. A Contribution to the Theoretical and Experimental Examination of the Flow through Plane Supersonic Deceleration Cascades and Supersonic Compressor Rotors. ASME Journal of Engineering for Power, 1973, 95.
  • 5Breugelmans F A E. The Mach 2 Axial Flow Compressor Stage. ASME 75-GT-22, 1975.
  • 6Breugelmans F A E. The Supersonic Axial Inlet Component in a Compressor. ASME 75-GT-26, 1975.
  • 7Gallus H E, Bohn D, Broichhausen K D. Measurements of Quasi-Steady and Unsteady Flow Effects in a Supersonic Compressor Stage. ASME Journal of Engineering for Powers 1977.99.
  • 8Gallus H E, Bohn D, Broichhausen K D. Unsteady Upstream Effects in Axial-Flow Supersonic Compressor Stages. ASME 79-GT-55, 1979.
  • 9Broichhausen K D, Gallus H E. Three-Dimensional Effects in Supersonic and Transonic Compressor Rotors-an Experimental and Computational Study. ASME 82-GT- 276, 1982.
  • 10Lawlor S P, Hinkey J B, Mackin S G, et al. Supersonic Compression Stage Design and Test Results. ASME IMECE2004-59914, 2004.

共引文献15

同被引文献46

  • 1韩吉昂,钟兢军,严红明,孙鹏,于洋.旋转冲压压缩转子三维进气流道数值研究[J].航空动力学报,2009,24(5):1079-1088. 被引量:20
  • 2张广辉,刘占生.旋转冲压发动机高速动静混合气体轴承性能分析[J].推进技术,2009,30(5):610-617. 被引量:8
  • 3王掩刚,刘波,马昌友,管继伟.出口支板周向布局对上游流场影响效应研究[J].推进技术,2006,27(3):262-265. 被引量:4
  • 4田新 刘占生.旋转冲压发动机进气道流场及气流对转子的作用力研究.振动与冲击,2008,27(8):32-35.
  • 5Storer J A, Cumpsty N A. An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Com- pressors [J]. Journal of Turbomachinery, 1994, 116(4): 648-656.
  • 6Cumpsty N A. Compressor Aerodynamics [M]. Longman Scienti. C and Technical, Essex, England, UK, 1989.
  • 7Hofmann W, Ballmann J. Tip Clearance Vortex Develop- ment and Shock-Vortex-Interaction in a Transonic Axial Compressor Rotor [R]. AIAA 2002-008.
  • 8De Biasi V.485-kW turbine rated 35% simple cycle at 1700 F firing temperature[J].Gas Turbine World,2002,32(5):13-16.
  • 9Lawlor S P,Hinkey J B,Mackin S G,et al.Supersonic compression stage design and test results[R].ASME Paper 2004-IMECE-59914,2004.
  • 10Steele R,Baldwin P,Kesseli J.Insertion of shock wave compression technology into micro turbines for increased efficiency and reduced costs[R].ASME Paper 2005-GT-68203,2005.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部