摘要
对一类广义对称正则长波方程的初边值问题进行了数值研究,提出了一个两层拟紧致差分格式,模拟了初边值问题的守恒性质,得到了差分解的存在唯一性,并利用离散泛函分析方法分析了该格式的二阶收敛性与稳定性.数值结果表明,该格式的精度明显好于一般的二阶格式.
The numerical solution for an initial-boundary value problem of generalized symmetrical regularized long-wave equations(GSRLW) is considered.A pseudo-compact finite difference scheme of two levels is proposed.This scheme well simulates the conservation properties of the problem.The existence and uniqueness of the solution are obtained.Discrete functional analysis proves that the finite difference scheme is convergent with order 2 and stable.The numerical examples show that the accuracy of this scheme is better than that of usual second-order difference schemes of two levels.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第7期18-21,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(40701014)
四川大学青年基金资助项目(校青2008125)
西华大学重点学科-应用数学资助项目(XZD0910-09-1)
关键词
广义对称正则长波方程
差分格式
守恒
收敛性
稳定性
generalized symmetrical regularized long-wave equation
difference scheme
conservation
convergence
stability