期刊文献+

智能工程与负荷预测 被引量:10

INTELLIGENT ENGINEERING AND LOAD FORECAST
下载PDF
导出
摘要 近几十年来,人工智能(AI)、神经网络(NN)和模糊系统(FS)方面进行了不少研究,并在许多领域内取得了很多成果。这些方法各有各的优点和不足之处。因此文章将此三种方法结合起来(称为智能工程(IE)),以求在解决工程问题时发扬各自的优点,同时避免其不足之处。文中还给出了智能工程的概念及其有关定义,最后给出了一个电力系统负荷预报的实例,以验证智能工程的有效性。 Artificial Intelligence (AI) Neural Networks (NN) and Fuzzy Systems (FS) have been studied in parallel and have had a measures of success in many areas in the past few decades. AI NN and FS have certainly one thing in common. They all attempt to make computer duplicate the behaviors of human intelligence, i.e. the goal of AI NN and FS is to produce intelligent machines. However, with different methodologies, the three techniques perform with advantages and limitations respectively. The main idea of the paper is to combine all of the three techniques together, it will be called Intelligent Engineering (IE), to share the advantages and avoid the limitations in solving the engineering problems. The conception of IE and other definitions have been defined and a case study on electrical load forecasting to show the powerfulness of IE is also given in this paper.
出处 《电网技术》 EI CSCD 北大核心 1999年第5期15-18,共4页 Power System Technology
关键词 智能工程 人工智能 专家系统 负荷预测 电力系统 intelligent engineering load forecasting artificial intelligence neural networks fuzzy systems
  • 相关文献

参考文献2

  • 1Hu Zhaoguang,Int Conf Power Systems Malaysia,1994年
  • 2Lee K T,IEEE Trans Power Systems,1992年,7卷,1期

同被引文献78

引证文献10

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部