期刊文献+

纳米颗粒抗菌机理的研究进展 被引量:18

Progress of Antibacterial Mechanisms Study on Nanoparticles
原文传递
导出
摘要 随着具有抗菌效应的纳米颗粒被大量报道,纳米颗粒的抑菌杀菌机理也成为重要的研究领域并取得一定进展,本文综述了常见纳米颗粒作用机理的研究进展。当前大多数实验表明,纳米颗粒引起细胞膜的破坏是其抗菌抑菌效应的主要原因,结合已有研究,作者提出,纳米颗粒抑菌杀菌分为四个阶段:同细胞的接触、与细胞膜的相互作用及对膜的破坏、胞内杀菌和细菌死亡。文中重点分析探讨了纳米颗粒同细菌细胞膜作用过程中一些待解答的基础性问题。最后通过比较发现,纳米颗粒同抗生素作用方式相异,而与抗菌肽的作用模式相近,细菌对纳米颗粒较难产生耐药性,这对当前治疗耐药菌株的感染有良好的前景。 An explosive number of reports on antimicrobial nanoparticles has not yet translate into a comprehensive understanding of how these materials affect bacteria at the molecular level of.This review aims to summarize some of these antibacterial mechanisms.We propose that contacts,nanoparticlesmediated disruption of bacterial membranes,interactions between NPs and bacterial components within the membrane and bacteria death,are generally necessary steps in this process.We compare the differences of actions between nanoparticles,antibiotics and antimicrobial peptides.
出处 《生物物理学报》 CAS CSCD 北大核心 2010年第8期638-648,共11页 Acta Biophysica Sinica
基金 国家自然科学基金项目(90813032) 国家重大科学研究计划基金项目(2009CB930001)~~
关键词 纳米颗粒 抗菌机理 抗生素 抗菌肽 Nanoparticles Antibacterial mechanisms Antibiotics Antibacterial peptides
  • 相关文献

参考文献41

  • 1Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622-627.
  • 2Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16 (10): 2346-2353.
  • 3Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coil Appl Environ Microbiol, 2007, 73 (6): 1712-1720.
  • 4Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Silver nanoparticles: Partial oxidation and antibacterial activities. J Biol Inorg Chem, 2007, 12(4): 527-534.
  • 5Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res, 2006, 5(4): 916-924.
  • 6Su HL, Chou CC, Hung D J, Lin SH, Pao IC, Lin JH, Huang FL, Dong RX, Lin JJ. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 2009, 30(30): 5979-5987.
  • 7Lee J, Fortner JD, Hughes JB, Kim JH. Photochemical production of reactive oxygen species by C60 in the aqueous phase during uv irradiation. Environ Sci Technol, 2007, 41(7): 2529-2535.
  • 8Lyon DY, Alvarez PJ. Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol, 2008, 42(21 ): 8127-8132.
  • 9Zhang XD, Su H J, Zhao Y, Tan TW. Antimicrobial activities of hydrophilic polyurethane/titanium dioxide complex film under visible light irradiation. J Photochem Photobiol A-Chem, 2008, 199(2-3): 123-129.
  • 10Beyth N, Houri-Haddad Y, Baraness-Hadar L, Yudovin- Farber I, Domb A J, Weiss El. Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials, 2008, 29(31): 4157-4563.

二级参考文献49

  • 1Niyonsaba F, Hirata M, Ogawa H, et al. Epithelial cell-derived antibacterial peptides human beta-defensins and cathelicidin: multifunctional activities on mast cells. Curr Drug Targets lnflamm Allergy, 2003, 2(3): 224-231.
  • 2Yang D, Biragyn A, Hoover DM, et al. Multiple roles of antimicrobial defensins, cathelicidins and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol, 2004, 22: 181-215.
  • 3Davidson DJ, Currie A J, Reid GS, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol, 2004, 172:1146-1156.
  • 4Yeaman R, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003, 55(1): 27-55.
  • 5Powersand JP, Hancock RE. The relationship between peptide structure and antibacterial activity. Peptides, 2003, 24(11): 1681-1691.
  • 6Hancock RE, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother, 1999, 43(6): 1317-1323.
  • 7Peschel A, Jack RW, Otto M, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with 1-1ysine. J Exp Med, 2001. 193(9): 1067-1076.
  • 8Hsu ST, Breukink E, de Kruijff B, et al. Mapping the targeted membrane pore formation mechanism by solution NMR: the nisin Z and lipid Ⅱ interaction in SDS micelles. Biochemistry, 2002, 41(24): 7670-7676.
  • 9Fehlbaum P, Bulet P, Chernysh S, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci USA, 1996, 93(3): 1221-1225.
  • 10Yang L, Harroun TA, Weiss TM, et al. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J, 2001, 81(3): 1475-1485.

共引文献32

同被引文献260

引证文献18

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部