期刊文献+

基于粒子群算法的测试用例自动生成方法研究 被引量:4

Research of Automatic Testcase Generation Functions Based on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 软件测试是保证软件质量、提高软件可靠性的关键,而提高生成测试用例的自动化程度又是提高软件测试自动化程度的关键。为了提高生成测试用例的自动化程度,改进了基本粒子群优化算法,提出了基于改进的粒子群优化算法的测试用例自动生成系统框架,并给出了基于改进的粒子群优化算法的测试用例自动生成算法。实验结果表明,使用文中提出的算法,自动生成测试用例所需的迭代次数和平均运行时间明显优于遗传算法等测试用例自动生成算法,一定程度上提高了生成测试用例的自动化程度。 The software testing is an important step that guarantees software quality and reliability,and improving the automation ability of testcase generation is the key point for the entire process.In order to improve the automation ability of testcase generation,has improved particle swarm optimization algorithm and has put forward the frame of automatic testcase generation system based on particle swarm optimization algorithm,and automatic testcase generation functions based on particle swarm optimization algorithm.Experiment has proved that this improved algorithm's convergence speed is generally faster than other algorithms such as genetic algorithm,and improving the automation ability of testcase generation.
作者 贾冀婷
出处 《计算机技术与发展》 2010年第9期24-27,共4页 Computer Technology and Development
基金 西安市科技计划项目(YF07024)
关键词 软件测试 自动测试 测试用例 粒子群 software testing automatic software testing testcase particle swarm
  • 相关文献

参考文献10

  • 1Gallagher M,Narasimhan V L.ADTEST:A Test Data Generation Suite for Ada Software Systems[J].IEEE Transactions on Software Engineering,1997,23(8):473-484.
  • 2MOSLEYDJ POSEYBA.软件测试自动化[M].北京:机械工业出版社,2003..
  • 3Kennedy J,Eberhart R.Particle Swarm Optimization[C]∥In:Proc IEEE Int Conf on Neural Networks.[s.l.]:[s.n.],1995:1942-1948.
  • 4朱玉平.一种改进粒子群优化算法[J].计算机技术与发展,2008,18(11):106-108. 被引量:6
  • 5王艳玲,李龙澍,胡哲.群体智能优化算法[J].计算机技术与发展,2008,18(8):114-117. 被引量:18
  • 6Clerc M.The Swarm and the Queen:Towards a deterministic and Adaptive Particle Swarm Optimization[C]∥Proceedings of 1999 Congress Evolutionary Computation.Piscataway,NJ:IEEE Press,1999:951-957.
  • 7Kennedy J,Eberhart R C.A New Optimizer Using Particle Swarm Theory[C]∥Proceedings of the sixth International Symposium on Micro Machine and Human Science.Nogoya,Japan:[s.n.],1995:39-43.
  • 8Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer[C]∥Proceedings of the IEEE Congress on Evolutionary Computation.[s.l.]:[s.n.],1998:69-73.
  • 9万琳.面向C程序的测试用例自动生成实现[J].火力与指挥控制,2006,31(10):73-76. 被引量:2
  • 10郑钧泽,徐晓峰,郭东辉.基于克隆选择算法的面向程序路径测试数据生成方法[J].计算机技术与发展,2009,19(8):8-10. 被引量:1

二级参考文献21

  • 1伦立军,丁雪梅,李英梅.基于遗传算法的测试数据生成研究[J].计算机工程,2005,31(23):82-84. 被引量:14
  • 2薛云志,陈伟,王永吉,赵琛,王青.一种基于Messy GA的结构测试数据自动生成方法[J].软件学报,2006,17(8):1688-1697. 被引量:14
  • 3Bogdan K.Automated Software Test Data Generation[J].IEEE Trans.On Software Eng.,1990,16(8):17-19.
  • 4Jones B F,Sthamer H H,Eyres D E.Automatic Structural Testing Using Genetic Algorithms[J].Software Engineering Journal,1996,21 (9):215-223.
  • 5Akos H,Istvan F.An Applicable Test Data Generation Algorithm for Domain Errors[J].ACM Trans.Softw.Eng,1998,23(4):117-120.
  • 6Dorigo M,GambardeUa L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem [J ].IEER Transactions on Evolutionary Computations, 1997, 1(1):53-66.
  • 7Gambardella L M, Dorigo M. Solving Symmetric and Asymmetric TSPs by Colonies[C]//In proceedings of the IEEE Intemational Conference on Evolutionary Computation (ICEC '96). [s. l. ] : IEEE Press, 1996:622 - 627.
  • 8Kennedy J,Eberhart R C. Partide swarm optimization[ C]// In:Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ : [ s. n. ], 1995 : 1942 - 1948.
  • 9Dorigo M, Maniezzo V,Colomi A. The ant system:optimization by a colony of ccoperating agents[ J ]. IEEE Transactions on Systems,Man, and Cybernetics,Part B, 1996,26(1):29- 41.
  • 10Bullnheimer B, Hartl R F, Strauss C. A New Rank - based Version of the ant system:A Computational Study[ R]. Vienna: Institute of Management Science, University of Vienna, 1997.

共引文献32

同被引文献35

  • 1王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 2王丽,王晓凯.一种非线性改变惯性权重的粒子群算法[J].计算机工程与应用,2007,43(4):47-48. 被引量:60
  • 3王子元,聂长海,徐宝文,史亮.相邻因素组合测试用例集的最优生成方法[J].计算机学报,2007,30(2):200-211. 被引量:25
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 5苏守宝,汪继文,方杰.粒子群优化技术的研究与应用进展[J].计算机技术与发展,2007,17(5):249-252. 被引量:17
  • 6CHEN Yong, ZHONG Yong, SHI Ting-ting, et al. Comparison of two fitness functions for GA-based path- oriened test data generation[C]//Ihe 2009 5th International Conference on Natural Computation. [S.I.]: [s.n.], 2009, 4: 177-181.
  • 7CAO Yao, HU Chun-hua, LI Lu-ming. An approach to genertate software test data for a specific path automatically with genetic algorithrn[C]//The 2009 8th International Conference on Reliability, Maintainability and Safety. [S.I.]: [s.n.], 2009: 888-892.
  • 8XU Xiao-feng, CHEN Yart, Li Xiao-chao, et al. A path- oriented test data generation approach for automatic software testing[C]//The 2008 2rid International Conference on Anti-counterfeiting, Security and Identification. [S.1.]: [s.n.], 2008: 63-66.
  • 9SRIVASTAVA P R, RAMACHANDRAN V, KUMAR M, et al. Generation of test data using meta heuristic approach[C] //The 2008 IEEE Region 10 Conference. [S.l.]: IEEE, 2008: 1-6.
  • 10LI Ai-guo, ZHANG Yan-li. Automatic generating all-path test data of a program based on PSO[C]//The 2009 World Congress on Software Engineering. [S.I.]: [s.n.], 2009, 4: 189-193.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部