期刊文献+

一种进行K-Means聚类的有效方法 被引量:28

An Efficient Method for K-Means Clustering
原文传递
导出
摘要 现有的K-Means聚类算法均直接作用于多维数据集上,因此,当数据集基数和聚类属性个数较大时,这些聚类算法的效率极其低下.为此,文中提出一种基于正规格结构的有效聚类方法(KMCRG).KMCRG算法以单元格为处理对象来有效完成K-Means聚类工作.特别,该算法使用格加权迭代的策略来有效返回最终的K个类.实验结果表明,KMCRG算法在不损失聚类精度的基础上能够快速返回聚类结果. The existing K-Means clustering methods directly act on multidimensional datasets. Hence, these methods are extremely inefficient as the cardinality of input data and the number of clustering attributes increase. Motivated by the above fact, in this paper, an efficient approach for K-Means clustering based on the structure of regular grid, called KMCRG ( K-Means Clustering based on Regular Grid), is proposed. This method effectively implements K-Means clustering by taking cell as handling object. Especially, this method uses the tactics of grid weighted iteration to effectively gain the final K classes. The experiment results show that the algorithm can quickly gain the clustering results without losing clustering precision.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第4期516-521,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60903032 70771077) 教育部博士点基金项目(No.20090072120056) 国家863计划项目(No.2008AA04Z106)资助
关键词 K-MEANS聚类 正规格结构 性能评估 K-Means Clustering, Regular Grid Structure, Performance Evaluation
  • 相关文献

参考文献10

  • 1MacQueen J.Some Methods for Classification and Analysis of Multivariate Observations//Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley,USA,1967:281-297.
  • 2Tou J.Pattern Recognition Principles.Reading,USA:AddisonWesley,1974.
  • 3Linde Y,Buzo A,Gary R.An Algorithm for Vector Quantizer Design.IEEE Trans on Communication,1980,28(1):84-95.
  • 4Chomicki J,C,odfrey P,Gryz J,et al.Skyline with Presorting:Theory and Optimization//Proc of the International Conference on Intelligent Information Systems.Wroclaw,Poland,2005:216-225.
  • 5Birgin E G,Martinez J M,Ronconi D P.Minimization Suhproblems and Heuristics for an Applied Clustering Problem.European Journal of Operational Research,2003,146(1):19-34.
  • 6Kanungo T,Mount D M,Netanyaha N S,et al.An Efficient K-Means Clustering Algorithm:Analysis and Implementation.IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(7):881-892.
  • 7Ester M,Kriegel H,Sander J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise//Proc of the 2nd International Conference.on Knowledge Discovery and Data Mining.Portland,USA,1996:226-231.
  • 8Corral A,Almendros J M.A Performance Comparison of DistanceBased Query Algorithms Using R-Trees in Spatial Databases.Information Sciences:An International Journal,2007,177(11):2207-2237.
  • 9Pei Jian,Jin Wen,Ester M,et al.Catching the Best Views of Skyline:A Semantic Approach Based on Decisive Subspaces//Proc o the 31st International Conference on Very Large Data Bases.Trondheim,Norway,2005:253-264.
  • 10Xiong Xiaopeng,Mokbel M F,Aref W G.SEA-CNN:Scalable Processing of Continuous k-Nearest Neighbor Queries in Spatio and Temporal Databases//Proc of the 21st International Conference on Data Engineering.Tokyo,Japan,2005:643-654.

同被引文献240

引证文献28

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部