期刊文献+

直接LDA在人脸识别中的鉴别力分析 被引量:7

Discriminative analysis of direct linear discriminant analysis for face recognition
下载PDF
导出
摘要 直接线性鉴别分析(DLDA)曾被声明利用类内离散矩阵零空间内外所有鉴别信息,为了分析声明的理论缺陷,对DLDA在人脸识别中的鉴别特性进行了研究.鉴于DLDA是在类间离散矩阵列空间中寻找最优解,理论分析从下面3方面内容展开:类间和类内离散矩阵的列空间之间的关系、类间离散矩阵列空间与类内离散矩阵零空间的关系以及在保留全部鉴别矢量下的DLDA特性,结果表明,在小样本条件下,DLDA几乎没利用零空间内的信息,导致一些有用的鉴别信息的丢失;若保留全部的鉴别矢量,DLDA退化为类间离散矩阵的保留所有非零成分的主成分分析.在人脸数据库ORL和YALE上的比较实验结果显示:DLDA的识别率都次于其它几种线性鉴别分析扩展方法,与理论分析一致. Direct linear discriminant analysis(DLDA)is claimed that it can take advantage of all the information,both within and outside of the within-class scatter matrix's null space.In order to analyze this claim's flaw in theory,the discriminative characteristics of DLDA for face recognition was studied.Since the optimal solution of DLDA is inside the range space of the between-class scatter matrix,a theoretical analysis was unfold via the following three aspects:the relationship between the within-class and betweenclass scatter matrix's range space,the relationship between the within-class scatter matrix's null space and the between-class scatter matrix's range space,the characteristics of DLDA under keeping all the discriminative vectors.The results show that:in undersampled cases DLDA nearly can not make use of the information inside the null space of the within-class scatter matrix,thus some discriminative information may be lost;DLDA is degenerated as PCA of the between-class scatter matrix with all nonzero principal components if it keeps the complete discriminative vectors found.The comparative results on the face database,ORL and YALE,indicate that DLDA is inferior to the other extensions of linear discriminant analysis in terms of recognition accuracy.Which is consistent with the theoretical analysis.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第8期1479-1483,共5页 Journal of Zhejiang University:Engineering Science
关键词 人脸识别 主成分分析 线性鉴别分析 直接线性鉴别分析 小样本 face recognition principal components analysis(PCA) linear discriminant analysis(LDA) direct linear discriminant analysis(DLDA) small sample size
  • 相关文献

参考文献12

  • 1KRZANOWSKI W J, JONATHAN P, MCCARTHY W V, et al. Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data [J]. Applied Statistics, 1995, 44(11): 101 - 115.
  • 2YU Hua, YANG Jie. A direct LDA algorithm for high- dimensional data-with application to face recognition [J]. Pattern Recognition,2001,34(10) : 2067 - 2070.
  • 3LU J, PLATANIOTIS K N, VENETSANOPOULOS A N. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition [J]. Pattern Recognition Letters, 2005, 26(2): 181-191.
  • 4ZHENG Yu-Jie, GUO Zhi-Bo, YANG Jian, et al. DLDA/QR: a robust direct LDA algorithm for face recognition and its theoretical foundation [J]. Lecture Notes in Computer Science, 2007, 4426: 379 - 387.
  • 5厉小润,赵光宙,赵辽英.改进的核直接Fisher描述分析与人脸识别[J].浙江大学学报(工学版),2008,42(4):583-589. 被引量:8
  • 6HUANG R, LIU Q, LU H, et al. Solving the small sample size problem of LDA [C]// Proceedings of International Conference on Pattern Recognition. USA:IEEE, 2002, 3: 29 - 32.
  • 7CEVIKALP H, NEAMTU M, WILKES M, et al. Discriminative common vector method with kernels [J]. IEEE Transactions on neural networks, 2006, 17 (6):1550 -1565.
  • 8PARK H, PARK C H. A comparison of generalized linear discriminant analysis algorithms [J]. Pattern Recognition, 2008, 41(3) :1083- 1097.
  • 9GAO Hui, DAVIS J W. Why direct LDA is not equivalent to LDA [J]. Pattern Recognition, 2006, 39 (5) : 1002 - 1006.
  • 10YE Jie-ping, XIONG Tao. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis [J]. Journal of Machine Learning Research, 2006, 7:1183 - 1204.

二级参考文献11

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2高秀梅,杨静宇,杨健.一种最优的核Fisher鉴别分析与人脸识别[J].系统仿真学报,2004,16(12):2864-2868. 被引量:13
  • 3边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..
  • 4BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711 -720.
  • 5HUA Yu, YANG Jie. A direct LDA algorithm forhigh- dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34(11): 2067-2070.
  • 6LU Ju-wei, PLATANIOTIS K N, VENETSANOPOU- LOS A N. Regurarization studies of linear discriminant analysis in small sample size scenarios with application to face recognition[J]. Pattern Recognition Letters, 2005, 26(2):181-191.
  • 7JOHN S T,NELLO C. Kernel methods for pattern analysis [M]. Beijing: China Machine Press, 2005.
  • 8MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels [C] // Proceedings of IEEE International Workshop on Neural Networks for Signal Processing. Madison, Wisconsin:IEEE, 1999, 41- 48.
  • 9GAUDAT G, ANOUAR F, Generalized discriminate analysis using a kernel approach [J]. Neural Computation, 2000,12(10) :2385 - 2404.
  • 10YANG Ming-hsuan. Kernel eigenfaces vs. Kernel Fisherfaces: face recognition using kernel methods [C]//Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition (RGR' 02). Washington D. C:IEEE, 2002,215 - 220.

共引文献7

同被引文献82

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部