期刊文献+

基于鼻韵尾分离的汉语声韵母识别模型 被引量:3

Initial/final acoustic model based on separating nasal coda in Chinese Putonghua speech recognition
原文传递
导出
摘要 研究汉语自然口语识别中的建模单元选择问题。在HMM三状态模型中,声韵母单元与音素单元作为两种最流行的建模单元各有优劣。一方面从自然口语音变严重的问题出发,倾向采用粗粒度的声韵母单元以概括各种音变;另一方面从三状态结构可能无法有效描述复杂单元的问题出发,又倾向采用细粒度的音素单元。本文在实验语音学理论研究成果与声韵母时长分析实验结果的基础上,主张对扩展声韵母单元进行有选择的拆分,提出了基于鼻韵尾分离的声韵母拆分方法。实验结果表明本文的方法与扩展声韵母单元、音素单元相比,识别性能有了明显改善,其字错误率分别降低2.23%和9.45%。 This paper focuses research on acoustic modeling unit selection in Chinese Putonghua spontaneous speech recognition. Under HMM three-state models,two most popular modeling units,namely extended initial/final(XIF) units and phoneme units,have their own advantages and drawbacks.On one hand,from the perspective of serious pronunciation variation problem in spontaneous speech,the coarsely granular XIF units are preferred to gather up all kinds of pronunciation variations.On the other hand,from the perspective of the low-distinguish ability of three-state structure for complex modeling units,the finely granular phoneme units are preferred.In this paper,based on theoretical achievements of experimental phonetics and the experimental results of duration analysis of XIF units,we propose an XIF model with separating nasal coda.Experiments carried out on a Chinese Putonghua spontaneous speech recognition task show that our proposed method is better than the XIF modeling and phoneme-based modeling,with the character error rate is reduced by 2.23%and 9.45%respectively.
出处 《声学学报》 EI CSCD 北大核心 2010年第5期587-592,共6页 Acta Acustica
基金 973项目(2004CB318106) 863项目(2006AA010102)和863项目(2006AA01Z195)
  • 相关文献

参考文献8

二级参考文献65

  • 1钱跃良,林守勋,刘群,刘宏.2005年度863计划中文信息处理与智能人机接口技术评测回顾[J].中文信息学报,2006,20(B03):1-6. 被引量:4
  • 2董滨,赵庆卫,颜永红.基于共振峰模式的汉语普通话中韵母发音水平客观测试方法的研究[J].声学学报,2007,32(2):122-128. 被引量:16
  • 3齐士钤 张家禄.汉语普通话辅音音长分析[J].声学学报,1982,(1):8-13.
  • 4吴宗济.普通话语句中的声调变化[J].中国语文,1982,6:439-449.
  • 5王作英.基于段长分布的HMM语音识别模型 [A]..第二届全国汉字汉语识别会议 [C].庐山,1989.9.
  • 6Kirchhoff K. Robust speech recognition using articulatory information. PhD thesis, University of Bielefeld, Germany, 1999.
  • 7Livescu K et al. Articulatory feature-based methods for acoustic and audio-visual speech recognition: JHU Summer Workshop Final Report. Technical report, Johns Hopkins University Center for Language and Speech Processing, 2007.
  • 8Cetin Oet al. An articulatory feature-based tandem approach and factored tandem observation modeling, in ICASSP, 2007; 4: 645-648, ISBN: 1-4244-0727-3.
  • 9Cetin O, Magimai-Doss M, Livescu K, Kantor A, King S, Bartels C, Frankel J. Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPs. in Proc. ASRU, 2007:36-41.
  • 10吴宗济.试论普通话语音的“区别特征”及其相互关系[J].中国语文,1982,(6).

共引文献107

同被引文献30

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部