期刊文献+

基于MPICH2和并行Q学习的模具制造项目群随机调度

Stochastic scheduling for multiple mould and die manufacturing projects based on MPICH2 and parallel Q-learning
下载PDF
导出
摘要 通过分析模具制造项目工期、费用与报酬的不确定性以及项目返修频繁发生的特点,建立了基于离散时间马尔可夫链的模具制造项目群随机演化模型,提出了基于MPICH2和并行Q学习的模型求解算法,在一定程度上克服了维数灾难问题。最后以Visual C++6为工具,在多核环境下实现了该算法,并结合示例说明了算法的可行性与有效性。结果表明该算法在模具制造项目群随机调度中具有一定的应用价值。 Through the analysis of uncertainties of the durations,costs and rewards as well as the characteristic of frequent repairing in the mould and die manufacturing project,this paper proposed a stochastic evolution model of multiple mould and die manufacturing projects,which was on the basis of a discrete time Markov chain. With aim to overcome the curse of dimensionality,an algorithm based on MPICH2 and parallel Q-learning was put for ward to solve the above stochastic dynamic programming model. Finally,the algorithm was realized in a multi-core environment by using Visual C ++ 6 and was explained with a sample example. The results show that the model is applicable and the algorithm is reliable and effective as well. And the results show that this algorithm can effectively solve stochastic scheduling problems for multiple mould and die manufacturing projects.
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3242-3246,共5页 Application Research of Computers
基金 国家“863”计划资助项目(2006AA04Z132) 国家自然科学基金资助项目(50875051) 广东工业大学青年基金资助项目(20062014)
关键词 模具制造项目群 MPICH2 多核 并行Q学习 METROPOLIS准则 multiple mould and die manufacturing projects MPICH2 multi-core parallel Q-learning Metropolis criterion
  • 相关文献

参考文献9

  • 1HERROELEN W,LEUS R.Project scheduling under uncertainty:survey and research potentials[J].European Journal of Operation Research,2005,165(2):289-306.
  • 2AYTUG H,LAWLEY M,McKAY K,et al.Executing production schedules in the face of uncertainties:a review and some future directions[J].European Journal of Operation Research,2005,161(3):86-110.
  • 3DEBELS D,VANHOUCKE M.Future research avenues for resource constrained project scheduling:search space restriction or neighborhood search extension[R].Belgium:Ghent University,2006.
  • 4WEGLARZ J.Project scheduling:recent models,algorithms and applications[M].Boston:Kluwer Academic Publishers,1999:309-332.
  • 5NEUMANN K,STEINHARDT U.GERT networks and the time-oriented evaluation of projects[R].New York:Springer-Verlag,1979.
  • 6苏志龙,陈庆新,陈新,孙健.基于协商的模具虚拟企业生产项目规划[J].中国机械工程,2002,13(22):1931-1937. 被引量:11
  • 7李英杰,陈庆新,陈新度,陈新.多属性的虚拟企业并行协商项目规划算法[J].机械工程学报,2005,41(2):215-222. 被引量:17
  • 8陈圣磊,吴慧中,肖亮,朱耀琴.基于Metropolis准则的多步Q学习算法与性能仿真[J].系统仿真学报,2007,19(6):1284-1287. 被引量:7
  • 9周浦城,洪炳镕,韩学东,郭耸.基于多Agent的并行Q-学习算法[J].小型微型计算机系统,2006,27(9):1704-1707. 被引量:3

二级参考文献26

  • 1任传祥,张海,范跃祖.混合遗传-模拟退火算法在公交智能调度中的应用[J].系统仿真学报,2005,17(9):2075-2077. 被引量:30
  • 2Fleszar K, Hindi K S. Solving the resource-constrained project scheduling problem by a variable neighbourhood search. European Journal of Operational Research, 2004,155(2): 402~413.
  • 3Peter B, Andreas D, Rolf M, et al. Resource-constrained project scheduling: Notation, classification, model, and methods. European Journal of Operational Research, 1999,112: 3~41.
  • 4Susan E C, Kazuhiro K, Victor R, et al. Multistage negotiation for distributed constraint satisfaction. IEEE transactions on system, man, and cybernetics, 1991, 21(6): 1 462~1 477.
  • 5Leu S S, Chen A T, Yang C H. A GA-based fuzzy optimal model for construction time-cost trade-off. International Journal of Project Management, 2001, 19:47~58.
  • 6Timonthy L, Shaftel, Beverley M W. Time-cost evaluation of alternative system/process designs. International Transactions in Operational Research, 1999, 6:275~288.
  • 7WANG Dingwei, YUNG K L, IP W H.A Heuristic Genetic Algorithm for Subcontractor Selection in a Global Manufaturing Environment.IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2001,31(2):189~198
  • 8刑文训 谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.193-246.
  • 9Sutton R S,Barto A G.Reinforcement learning:an introduction[M].MIT Press,Cambridge,1998.
  • 10Drummond C.Accelerating reinforcement learning by composing solutions of automatically identified subtasks[J].Journal of Artificial Intelligence Research,2002,16:59-104.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部