期刊文献+

三维正交非结构网格数值模型中物理流场的定义方法与改进 被引量:2

THE PHYSICAL CURRENT VELOCITY DEFINITION AND ITS IMPROVEMENT IN THE 3-D ORTHOGONAL UNSTRUCTURED GRID NUMERICAL MODEL
下载PDF
导出
摘要 使用Casulli等(2000)的数值方法建立了基于正交非结构网格的U型渠道的三维近岸正压水动力数值模型,检验了模型使用ELM(Eulerian-Lagrangian Method)方法处理平流项时,物理流场的定义对模拟结果的作用。数值试验和结果分析说明,使用ELM方法计算平流项所需的物理流场对计算结果影响明显,而目前常用的两种物理流场定义方法都存在一定不足——水位计算值对流速变化的反映不灵敏或者会产生小扰动等。针对常用物理流场定义方法的不足之处,作者在Casulli方法的基础上利用对多边形切向流速分量进行平均的方法改进了物理流场定义,抑制了小扰动。 A 3-D coastal barotropic hydrodynamic numerical model in a U-channel covered with an orthogonal unstructured gird was established using the numerical scheme of Casulli(2000).The effects of two current velocity definitions of physical current field for the advection term calculated by the Eulerian-Lagrangian Method(ELM) were examined.The numerical experiments and the results analysis showed that the results were obviously influenced by the definition of the physical current field used by ELM.Some disadvantages exist using the two common methods,such as insensitive feeding back between the velocity and elevation and existence of small oscillation.A new physical current field definition based on Casulli's scheme was proposed to inhibit the small oscillation in the orthogonal unstructured grid numerical model.
出处 《海洋与湖沼》 CAS CSCD 北大核心 2010年第4期621-627,共7页 Oceanologia Et Limnologia Sinica
基金 国家重点基础研究发展(973)计划 2006CB400602 2007CB816003号 我国近海海洋综合调查与评价专项 908-02-01-04号 海洋公益性行业科研专项经费项目 200705013号 国家海洋局第二海洋研究所基本科研业务专项资金项目 JG200810号
关键词 非结构网格 数值模型 ELM方法 物理流场 Unstructured grid Numerical model Eulerian-Lagrangian Method Physical current field
  • 相关文献

参考文献12

  • 1张耀先,丁新求,孙东坡.弯道水流横向流动与输沙研究[J].水利建设与管理,2003,23(4):76-78. 被引量:11
  • 2陈昞睿,朱建荣,戚定满.采用质点跟踪方法对物质输运方程平流项数值格式的改进[J].海洋与湖沼,2008,39(5):439-445. 被引量:2
  • 3Baptista A M, Zhang Y, Chawla A et al, 2005. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems: Ⅱ. Application to the Columbia River. Continental Shelf Research, 25(7-8): 935-972.
  • 4Casulli V, 1990. Semi-implicit finite difference methods for the two-dimensional shallow water equations. J Comput Phys, 86:56-74.
  • 5Casulli V, Cattani E, 1994. Stability, accuracy and efficiency of a semi-implicit method for 3D shallow water flow. Computers & Mathematics with Applications, 27:99-112.
  • 6Casulli V, Waiters R, 2000. An unstructured grid, three-dimensional model based on the shallow water equations. International Journal for Numerical Methods in Fluids, 32:331- 348.
  • 7Casulli V, Zanolli P, 2005. High resolution methods for multidimensional advection-diffusion problems in free-surface hydrodynamics, Ocean Modelling, 10:137-151.
  • 8Cheng R T, Casulli V, 2001. Evaluation of the UnTRIM model for 3-D tidal circulation. In: Spaulding M, Blumberg A ed. Proceedings of the 7-th International Conference on Estuarine and Coastal Modeling, St Petersburg, FL, November 2001, 628-642.
  • 9Oran E S, Boris J P, 1987. Numerical simulation of reactive flow. Elsevier, New York, 200-221.
  • 10Van der Molen J, Stelling G S, 1997. A non-orthogonal finite difference method for shallow water flow. In: J van der Molen ed. Tides in a Salt-Marsh, Febodruk BV, Enschhedo, Netherlands, 29-59.

二级参考文献13

  • 1Casulli V, 1990. Semi-implicit finite difference methods for the two-dimensional shallow water equations. Journal of Computational Physics, 86:56-74
  • 2Cheng R T, Casulli V, Nevil M, 1984. Eulerian-Lagrangian Solution of the Convection-Dispersion Equation in Natural Coodinates. Water Resources Research, 20(7): 944-952
  • 3Chorin A J, 1973. Numerical study of slightly viscous flow. J Fluid Mechanics, 57:785-796
  • 4Colella P, Woodward P R, 1984. The piecewise parabolic method (PPM) for gas-dynamical simulations. J Comput Phys, 54: 174-201
  • 5James I D, 1996. Advection schemes for shelf sea models. Journal of Marine Systems, 8:237-254
  • 6Neuman S P, 1981. A Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate spacetime grids. Journal of Computational Physics, 41:270-294
  • 7Roe P L, 1986. Characteristic-based schemes for the Euler equations. Ann Rev Fluid Mech, 18:337-365
  • 8Sweby P K, 1984. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal, 21: 995-1011
  • 9Van Leer B, 1979. Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov's method. J Comput Phys, 32:101-136
  • 10Yang H Q, Przekwas A J, 1992. A comparative study of advanced shock capturing schemes applied to Burger's equation. J Comput Phys, 102:139-159

共引文献11

同被引文献19

  • 1罗辉,周建仁,郭忠.南水北调对南四湖水环境影响分析与评估[J].河海大学学报(自然科学版),2005,33(1):63-67. 被引量:20
  • 2毛根海,姚懿伦,胡云进.多进出水口湖泊流场的水电比拟试验[J].江南大学学报(自然科学版),2005,4(6):626-629. 被引量:4
  • 3武周虎,乔海涛,付莎莎,周玉华.南水北调东线工程对南四湖环境的影响及对策[J].青岛理工大学学报,2006,27(1):1-7. 被引量:30
  • 4李冰冻,李克锋,李嘉,庄春义.天然河段港口工程三维流场数值模拟[J].水利水运工程学报,2006(2):24-28. 被引量:8
  • 5汪中华,颜立,朱庆申等,2006.济宁市水资源调查评价报告.济宁:济宁水文水资源勘测局,149-l88.
  • 6Backhaus J O, 1985. A three-dimensional model for the simula tion of shelf sea dynamics. Deutsche Hydrographische Zeitschrift, 38(4):165-187.
  • 7Gupta Akhilendra B, Jain Renu, Gupta Kapil, 1999. Water quality management for the Talkatora Lake, Jaipur-A case study. Water Science and Technology, 40(2): 29-33.
  • 8Hosoi Y, Kido Y, Nagira H et al, 1996. Analysis of water pollu tion and evaluation of purification measures in an urban river basin. Water Science and Technology, 34(12): 33-40.
  • 9Jiang Wensheng, Thomas Pohlmann, Jurgen Suendermann et al, 2000. A Modelling study of SPM transport in the Bohai Sea. J Marine System, 24(3-4):175-200.
  • 10Pohlmann T, 1996. Calculating the development of the thermal vertical stratification in the North Sea with a three-dimen sional baroclinic circulation model. Continental Shelf Re search, 16(2): 163-194.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部