期刊文献+

双连续n次积分C余弦函数的逼近定理 被引量:8

Approximation Theorem for Bi-continuous n-times Integrated C-Cosine Functions
下载PDF
导出
摘要 基于双连续半群概念,引入一致双连续半群序列概念,借助Laplace变换和Trotter-Kato定理,考察双连续n次积分C余弦函数与C-预解式之间的关系,得到逼近定理的稳定性条件,进而得出双连续n次积分C余弦函数逼近定理.从而对Banach空间强连续半群逼近定理和双连续半群逼近定理进行了推广,为相应抽象的Cauchy问题提供了解决方案. Based on the concept of bi-continuous semigroups,a uniformly bi-continuous sequence of semigroups was presented.With Trotter-Kato theorem and Laplace transformation,we obtain the approximation theorem for bi-continuous n-times integrated C-cosine functions by analyzing the relations between bi-continuous n-times integrated C-cosine functions and its resolvent to get stability condition for the approximation theorem and then generalize the approximation theorem for the strong continuous semigroups on Banach space and bi-continuous semigroups,providing a kind of solution for its relative abstract Cauchy problems.
出处 《应用泛函分析学报》 CSCD 2010年第3期249-253,共5页 Acta Analysis Functionalis Applicata
关键词 双连续半群 一致双连续半群 n次积分C余弦函数 预解式 逼近定理 bi-continuous semigroups uniformly bi-continuous sequence of semigroups n-times integrated C-cosine functions resolvent approximation theorem
  • 相关文献

参考文献2

二级参考文献5

  • 1郑权,华中理工大学学报,1992年,5卷,181页
  • 2Albanese A.A.,Mangino E..Trotter-Kato theorems for Bi-continuous semigroups and applications to feller semigroups[J],J.Math.Anal.Appl.,2004,289:477-492.
  • 3Shi Jine.Two approximation theorems for C-regularized semigroups[J],Journal of Nanjing University (Natural Sciences),1999,35:1-6.
  • 4Delaubenfels R..Existence families,funtional calculi and evolution equations[M],Lect.Notes in Math.,Springer-Verlag,1994.
  • 5Kühnemund F..A Hille-Yosida theorem for Bi-continuous semigroups[J],Semigroups Forum,2003,67:205-225.

共引文献26

同被引文献45

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部