期刊文献+

基于Volterra模型的LCD运动图像去模糊研究 被引量:3

Research on LCD Motion Blur Reduction Based on Volterra Model
下载PDF
导出
摘要 由液晶显示器(LCD)的"抽样-保持"特性与人眼视觉系统(HVS)的运动跟踪特性引起的运动模糊现象可以近似地用sinc函数的频域模型来描述。故本文在论述采用sinc^(-1)预补偿模型对LCD运动图像去模糊的基本原理的基础上,导出了采用Volterra模型替代sinc^(-1)时的参数选取方法和选择模型阶数的具体条件,从而为Volterra预补偿系统的硬件实现提供了理论依据。仿真结果显示:基于Volterra模型的图像预补偿系统在性能方面优于原sinc^(-1)系统,在处理小速度图像运动时造成的模糊现象中的效果与原sinc^(-1)系统相近,而在高速度造成的运动模糊的改善效果中,Volterra预补偿系统具有优于原sinc^(-1)系统的特点。 The "LCD ( Liquid Crystal Display) Motion Blur" problem results from the inherent sample-and-hold nature of LCD and the motion tracking features of the HVS ( Human Visual System) can be described in Frequency Domain with the sinc function. This paper presents the fundamentals of LCD motion deblurring using the sinc-1 model which based on the pre-compensation system at first. In order to implement the deblurring theory in the Hardware Environment, the Volterra model instead of the sirtc^-1 one is considered to establish the pre-compensation system, because of the parameters and order of the former can be determined under certain conditions. Finally, the simulation indicates that the fitting Volterra system is better than the original sirtc^-1 system. When it is used to deal with the low speed motion images, both effects of the motion deblurring are similar. But in the high speed situation, the effect of the Volterra system is better than the sinc^-1 system's.
出处 《信号处理》 CSCD 北大核心 2010年第9期1419-1422,共4页 Journal of Signal Processing
基金 国家自然科学基金资助
关键词 运动模糊 sinc模型 sinc^(-1)模型 Volterra模型 预补偿系统 motion blur sinc model, sinc^-1 model Volterra model pre-compensation system
  • 相关文献

参考文献9

  • 1M.A.Klompenhouwer,L.J.Velthoven,Motion blur reduction for liquid crystal displays:motion-compensated inverse filtering[J].Proceedings of the SPIE,Vol.5308,pp.690-699,2004.
  • 2H.Pan,X.-F.Feng,S.Daly,LCD motion blur modeling and analysis[J].IEEE Int.Conf.on Image Processing,pp.4-7,2005.
  • 3G.de Haan,M.A.Klompenhouwer,An overview of flaws in emerging television displays and remedial video processing,IEEE Trans.on Consumer Electronics,Vol.47,No.3,pp.326-334,2001.
  • 4X.-F.Feng,LCD motion-blur analysis,perception,and reduction using synchronized backlight flashing[J].Proceedings of the SPIE,Vol.6057,pp.213-226,2006.
  • 5Tanaphol Thaipanich,P.-H.Wu,Low Complexity Algorithm for Robust Video Frame Rate Up-Conversion(FRUC)Technique,IEEE Transactions on Consumer Electronics,Vol.55,No.1,pp.220-228,2009.
  • 6Y.Zhang,D.Zhao,X.Ji,R.Wang and W.Gao,A spatio-temporal auto-regressive model for frame rate up conversion,IEEE Trans.on Circuits System Video Technology,vol.19,No.9,pp.1289-1301,Sep.2009.
  • 7H.-Z.Tan(潭洪舟),Y.Huang,J.Fu.Blind identification of sparse Volterra systems[J].Int.J.Adaptive Control and Signal Processing,2008.
  • 8H.-Z.Tan(潭洪舟),T.Aboulnasr,TOM-based blind identification of nonlinear Volterra systems[J].IEEE Trans.on Instrumentation and Measurement,Vol.55,No.1,pp.300-310,2006.
  • 9L.Tan; J.Jiang,An adaptive technique for modeling second-order Voherra systems with sparse kernel[J].IEEE Trans.on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,Vol.45,No.12,pp.1610-1615,1998.

同被引文献19

  • 1赵超君,王敬东,李鹏.一种基于组合矩和小波变换的目标匹配算法[J].光电子技术,2009,29(1):18-22. 被引量:3
  • 2陈宇玺,韩崇昭,王明军,康欣.基于小波变换与图像不变矩的遥感图象匹配研究[J].电波科学学报,2004,19(4):444-447. 被引量:4
  • 3陈小光,封举富.Gabor滤波器的快速实现[J].自动化学报,2007,33(5):456-461. 被引量:21
  • 4Moghaddam M E, JamzadM. Motion blur identification in noisy images using mathematical models and statistical measures [J]. Pattern Recognition, 2007, 40 (7): 1946-1957.
  • 5Lokhande R, Arya K V,Gupta P. Identification of parame- ters and restoration of motion blurred images[C]//Proceed- inds of 1he 2006 ACM Symposium on Applied Computing, 2006:301-305.
  • 6Sun Shaojie, Wu Qiong, Li Guohui. Image restoration for single blurred image[C]//IEEE International Conference on Imellignet Computing and Intelligent Systems (ICIS), 2009:491-494.
  • 7Paramanand C,Rajagopalan A N. Unscented transforma- tion for depth from motion-blur in videos[C]//IEEE Com- puter Society Conference on Computer Vision and Pattern Recognit ion Workshops (CVPRW), 2010 : 38- 44.
  • 8Ftusser J, Suk T. Degraded image analysis: An invariant ap- proach[J]. IEEE Transactions on Pattern Analysis and Maehine Intelligence, 1998,20(6 ) : 590-603.
  • 9Suk T, Flusser J. Combined blur and affine moment invariants and their use in pattern recognition[J]. Pattern Recognition, 2003,36 2895-2907.
  • 10李庆震,祝小平,周洲.无人机运动模糊图像复原技术[J].火力与指挥控制,2009,34(2):51-54. 被引量:5

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部