期刊文献+

改进的基于密度方法的态势聚类显示算法 被引量:9

Improved Situation Clustering Display Algorithm Based on Density Method
下载PDF
导出
摘要 为解决计算机标图过程中因缩小地图比例尺而导致的标号扎堆问题,通过分析邻域参数,利用DBSCAN算法寻找相互遮挡的标号,在其质心处用标图代替扎堆标号。针对DBSCAN算法的不足,结合实际应用情况,将传统基于密度方法的圆形邻域改为针对应用的多边形邻域,提出改进的算法BDIRCAN。实验结果表明,BDIRCAN算法能较好地解决标号扎堆问题,避免对临近但不相互遮挡的标号进行错误的聚类。 In order to solve the problem that close military symbols may shelter each other while reducing scale of map in computer plotting, by analyzing the parameters of neighborhood, this paper uses Density-Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm to seek the symbols sheltering each other, and uses plot instead of symbols in their centroid. Aiming at the shortcomings of DBSCAN algorithm, it proposes an improved algorithm named Based on Density and Irregular Region Clustering of Applications with Noise(BDIRCAN), which considers application conditions and changes the traditional circular neighborhood to the applied irregular polygonal neighborhood. Experimental result shows that BDIRCAN can solve the problem well and avoid clustering the symbols which stay near but do not shelter each other.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第18期35-37,40,共4页 Computer Engineering
关键词 DBSCAN 算法 引射线法 聚类 标图 标号 Density-Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm radial algorithm clustering plot symbol
  • 相关文献

参考文献7

二级参考文献31

共引文献159

同被引文献56

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部