期刊文献+

基于合一句法和实体语义树的中文语义关系抽取 被引量:19

Chinese Semantic Relation Extraction Based on Unified Syntactic and Entity Semantic Tree
下载PDF
导出
摘要 该文提出了一种基于卷积树核函数的中文实体语义关系抽取方法,该方法通过在关系实例的结构化信息中加入实体语义信息,如实体类型、引用类型和GPE角色等,从而构造能有效捕获结构化信息和实体语义信息的合一句法和实体语义关系树,以提高中文语义关系抽取的性能。在ACE RDC 2005中文基准语料上进行的关系探测和关系抽取的实验表明,该方法能显著提高中文语义关系抽取性能,大类抽取的最佳F值达到67.0,这说明结构化句法信息和实体语义信息在中文语义关系抽取中具有互补性。 This paper proposes a convolution tree kernel-based approach to Chinese semantic relation extraction. It constructs a unified syntactic and entity semantic tree by incorporating entity semantic information, such as entity type, entity subtype and mention type etc. , into the structural information of a relation instance. The motivation behind this approach is to effectively capture both the structural and entity semantic information in a unified way in order to boost the predictive performance of relation extraction. Evaluation on the ACE RDC 2005 Chinese benchmark corpus shows that our method significantly improves the performance of Chinese semantic relation extraction, specifically achieving the highest F-measure of 67.0 on the top-level relation extraction, and exhibits the complementation of the structure of syntactic information and semantic information in Chinese Semantic Relation Extraction.
出处 《中文信息学报》 CSCD 北大核心 2010年第5期17-23,共7页 Journal of Chinese Information Processing
基金 国家863计划资助项目(2006AA01Z147) 国家自然科学基金资助项目(60673041 60873150) 国家教育部博士点基金资助项目(200802850006) 江苏省自然科学基金资助项目(BK2008160) 江苏省高校自然科学重大基础研究项目(08KJA520002)
关键词 中文语义关系抽取 卷积树核函数 实体语义信息 Chinese semantic relation extraction convolution tree kernel entity semantic information
  • 相关文献

参考文献19

  • 1Nanda Kambhatla. Combining lexical, syntactic and semantic features with Maximum Entropy models for extracting relations[C]//ACL. Morristown, NJ, USA, 2004: 178- 181.
  • 2Zhou GuoDong,Su Jian,Zhang Jie,et al.Exploring various knowledge in relation extraction[C]//ACL,2005:427-434.
  • 3Zhao S.B.and Grishman R.Extracting relations with integrated information using kernel methods[C]//ACL.Ann Arbor,USA,2005:419-426.
  • 4Wang Ting,Li Yaoyong,Kalina Bontcheva,et al.Automatic Extraction of Hierarchical Relations from Text[C]//Proceedings of the Third European Semantic Web Conference(ESWC 2006),2006:401-416.
  • 5车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 6董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 7Li W.J.,Zhang P.,Wei F.R.,Hou Y.X.,and Lu Q.A Novel Feature-based Approach to Chinese Entity Relation Extraction[C]//ACL.Columbus,Ohio,USA,2008:89-92.
  • 8Zelenko D,Aone C,Richardella A.Kernel methods for relation extraction[J].Journal of Machine Learning Research,2003,3(2003):1083-1106.
  • 9Culotta A,Sorensen J.Dependency tree kernels for relation extraction[C]//ACL.Barcelona,Spain,2004:423-429.
  • 10Bunescu R.C,Raymond J.M.A Shortest Path Dependency Kernel for Relation Extraction[C]//EMNLP.Vancover,B.C,2005:724-731..

二级参考文献73

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2梁晗,陈群秀,吴平博.基于事件框架的信息抽取系统[J].中文信息学报,2006,20(2):40-46. 被引量:38
  • 3张素香,文娟,秦颖,袁彩霞,钟义信.实体关系的自动抽取研究[J].哈尔滨工程大学学报,2006,27(B07):370-373. 被引量:10
  • 4董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 5MUC[EB/OL]. http://www. itl. nist. gov/iaui/874. 02/related project/muc/, 1987-1998.
  • 6ACE. The Automatic Context Extraction Project[EB/ OL]. http://www. ldc. upen. edu/Project/ACE, 2002-2005.
  • 7Collins M,Duffy N. Convolution Kernels for Natural Language[C]//NIPS, 2001.
  • 8Zelenko D, Aone C,Riehardella A. Kernel Methods for Relation Extraction[J]. Journal of Machine Learning Research,2003, (2) : 1083-1106.
  • 9Culotta A, Sorensen J. Dependency tree kernels for relation extraetion[C]//ACL, 2004: 423-429.
  • 10Bunescu R. C. and Mooney R. J. 2005. A Shortest Path Dependency Kernel for Relation Extraction[J]. EMNLP 2005: 724-731.

共引文献185

同被引文献214

引证文献19

二级引证文献220

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部