期刊文献+

聚四氟乙烯复合材料摩擦学性能的人工神经网络研究 被引量:2

Application of artificial neural network in the prediction of friction and wear properties of PTFE composites
下载PDF
导出
摘要 采用冷压烧结方法制备了不同含量碳纤维(CF)及颗粒状氧化硅(SiO2-P)协同增强的聚四氟乙烯(PTFE)复合材料,利用MPX-2000摩擦磨损试验机测试了不同载荷、滑动速度下PTFE复合材料的摩擦磨损性能,并利用人工神经网络(ANN)建立了摩擦系数、磨损量与材料组成及测试条件之间的非线性关系模型。结果表明,采用SCG算法、5-[15∶10∶5]3-1网络结构的ANN网络模型可以有效预测PTFE复合材料的摩擦磨损,数据的预测值与试验值的误差在10%以内。 Polytetrafluoroethylene(PTFE) composites filled with different carbon fiber(CF) contents and SiO2 particle(SiO2-P) were prepared by the method of cold press sintering in this paper.Their tribological properties under different loading and sliding speed were tested on a MPX-2000 friction and wear tester.Then the non-linear relationship model of material composition and experimental conditions vs friction coefficient or wear loss was established by means of artificial neural network(ANN) based on experimental data.Results indicate that the ANN using SCG algorithm and 5-[15∶10∶5]3-1 network structure can predict the tribological properties of PTFE composites effectively.All the errors between predicting results and experimental results are below 10%.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第9期1308-1310,共3页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(51005123)
关键词 人工神经网络 聚四氟乙烯 复合材料 摩擦磨损 artificial neural network(ANN) polytetrafluoroethylene(PTFE) composite friction and wear
  • 相关文献

参考文献8

  • 1Shi Yijun,Feng Xin,Wang Huaiyuan,et al.Effects of filler crystal structure and shape on the tribological properties of PTFE composites[J].Tribology International,2007,40:1195-1203.
  • 2Shi Yijun,Feng Xin,Wang Huaiyuan,et al.Tribological and mechanical properties of PTFE composites filled with the combination of short carbon fiber and carbon nano-fiber[J].Key Engineering Materials,2007,334/335:689-692.
  • 3汪怀远,冯新,史以俊,陆小华.纳米TiO_2与炭纤维协同填充PTFE复合材料的摩擦磨损性能[J].高分子材料科学与工程,2007,23(4):89-93. 被引量:21
  • 4Bahadur S,Gong D.Formulation of the model for optimal proportion of filler in polymer for abrasive wear resistance[J].Wear,1992,157:229-243.
  • 5Jiang Z,Zhang Z,Friedrich K.Prediction on wear properties of polymer composites with artificial neural networks[J].Composites Science and Technology,2007,67:168-176.
  • 6张志通.精通Matlab[M].北京:北京航空航天大学出版社,2006:60-80.
  • 7Kurkova V.Kolmogrov's theorem is relevant[J].Neural Computation,1991,3(4):617-622.
  • 8Hornik K,Stinchocombe M,White H.Multiplayer feedforward networks are universal approximators[J].Neural Networks,1989,2:359-366.

二级参考文献10

共引文献20

同被引文献44

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部