期刊文献+

基于FLUENT的幂律流体环空流数值模拟 被引量:2

原文传递
导出
摘要 利用FLUENT建立幂律流体环空流动的数值模型,将同心环空幂律流体轴向速度数值模拟结果与二维PIV实验结果对比,数值模拟与实验结果吻合良好。
出处 《科技促进发展》 2010年第8期209-209,共1页 Science & Technology for Development
  • 相关文献

参考文献3

二级参考文献46

  • 1岳湘安 陈家琅 等.幂律流体在偏心环空中轴向层流的速度分布[J].水动力学研究与进展,1998,3(3):1-9.
  • 2[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 3[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 4[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 5[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 6[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 7[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 8[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 9[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 10[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.

共引文献252

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部