期刊文献+

基于协作过滤的Web智能信息推荐方法 被引量:2

Web Intelligent Information Recommendation Method Based on Collaborative Filtering
原文传递
导出
摘要 传统的协作过滤方法存在的主要问题是需要人为地提供评价,论文设计的协作过滤方法对其进行了改进,根据用户模式自动获取用户评价,构建评价矩阵。将设计的协作过滤方法应用到个性化信息推荐,提出一种基于协作过滤的Web智能信息推荐方法(WIIRM)。WIIRM考虑用户访问页面的时间特性,不需要用户注册,在推荐时考虑页面的新颖性,同时实现离线处理与在线推荐的结合。实验结果表明,WIIRM是有效的。 The paper improves the traditional collaborative filtering method which needs artificial evaluation. The advanced method could gain evaluation value automatically through user pattern and establish evaluation matrix. This paper applies designed collaborative faltering method to personalized information recommendation, and proposes a Web intelligent information recommendation method based on colladorative filtering (WIIRM). WIIRM consideres the time of page calling and novelty of page. It could supply reconenendation service for unauthorized users. Meanwhile, it combines off-line processing and on-line recommendation. The experimental results indicates that WIIRM is effective.
作者 何波
出处 《图书情报工作》 CSSCI 北大核心 2010年第19期115-118,110,共5页 Library and Information Service
基金 教育部人文社会科学基金项目"图书馆2.0个性化信息服务与服务集成研究"(项目编号:09yjc870032)研究成果之一
关键词 智能信息推荐 个性化信息服务 协作过滤 intelligent information recommendation personalized information service collaborative filtering
  • 相关文献

参考文献9

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:544
  • 2何波,杨武,张建勋,王越.基于用户模式聚类的智能信息推荐算法[J].计算机工程与设计,2006,27(13):2360-2361. 被引量:7
  • 3Schechter S, Krishnan M, Smith M D. Using path profiles to predict HTIT requests//Proceedings of 7^th International World Wide Web Conference. Brisbane, 1998 : 457 - 467.
  • 4Cooley R, Mobasher B, Srivastava J. Grouping Web page references into transactions for mining World Wide Web browsing patterns// Proceedings of the 1997: IEEE Knowledge and Data Engineering Exchange Workshop. Newport Beach: IEEE, 1997:2 - 9.
  • 5Nasraoui O, Frigui H, Joshi A, et al. Mining Web access logs using relational competitive fuzzy clustering//Proceedings of the Eight International Fuzzy Systems Association World Congress, Taiwan, 1999 : 79 - 85.
  • 6曾子明.电子商务谈判系统与智能谈判技术.湖北:武汉大学出版社,2008:102-104.
  • 7Breese J, Heckennan D, Kadie C. Empirical Analysis of Predictive Aloo'ithms for Collaborative Filtering. In UAI, 1998 : 43 - 52.
  • 8王实,高文,杜建平,李锦涛.基于代理服务器的协作浏览[J].计算机科学,2002,29(2):40-42. 被引量:2
  • 9朱岩,林泽楠.电子商务中的个性化推荐方法评述[J].中国软科学,2009(2):183-192. 被引量:52

二级参考文献116

  • 1黎铭,薛晓冰,周志华.基于多示例学习的中文Web目录页面推荐[J].软件学报,2004,15(9):1328-1335. 被引量:17
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献590

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部