期刊文献+

12自由度4结点高精度矩形单元 被引量:4

A HIGH PRECISE RECTANGULAR ELEMENT WITH 4 NODES AND 12 DOF
原文传递
导出
摘要 研究了一种用来对包含梁柱和板单元的线弹性结构进行静力或动力分析的平面矩形单元。该矩形单元的每个结点含有3个自由度,其平面内转动自由度可使板单元与梁单元在结点的位移完全协调,从而使该单元能被方便地应用于包含板单元的框架填充墙或剪力墙等结构的建模中,且仅用非常少的该单元进行结构分析就能获得高精度的结果。该文通过3个算例论证了该单元处理结构静力和动力问题时的简便和高精度性,算例结果也表明该单元非常适用于框架填充墙或剪力墙等结构的分析。 A rectangular element formulation for the static and dynamic analysis of linear-elastic space structures composed of plate and beam-type members is presented in this study. The element considered in the present study has three degrees of freedom (DOF) at each node and an in-plane rotational DOF, which makes it compatible with two-dimensional (2D) beam-type element models. Then the element can be used with facility for the modeling of infilled frame and shear wall with the connections of slab components or 2D beam components. The rectangular element considered here yields highly accurate results with a very small number of elements. The effectiveness and simplifications of the presented rectangular element is demonstrated by three static and dynamic structural analysis examples. The results also show that the presented element be of high facility in solving stress problem of complex structures (such as infilled wall structures and shear wall structures).
出处 《工程力学》 EI CSCD 北大核心 2010年第9期22-26,共5页 Engineering Mechanics
基金 国家自然科学基金重大研究计划项目(90815030) 国家自然科学基金项目(50778072) 浙江省教育厅项目(Y200803519)
关键词 有限元 矩形单元 位移函数 动力特性 框架填充墙 finite element rectangular element displacement function dynamic characteristic infilled frame
  • 相关文献

参考文献12

  • 1Rao S S. The finite element method in engineering [M]. fourth ed. Burlington: Elsevier Butterworth-Heinemann, 2004.
  • 2Turner M J, Clough R W, Martin H C, Topp L J. Stiffness and deflection analysis of complex structures [J]. Journal of the Aeronautical Sciences, 1956, 23(9): 805-823.
  • 3Pian T H H. Derivation of element stiffness matrices by assumed stress distributions [J]. AIAA Journal, 1964, 2(7): 1333- 1336.
  • 4Argyris J H. Triangular elements with linearly varying strain for the matrix displacement method [J]. Journal of the Royal Aeronautical Society, 1965, 69(10): 711-713.
  • 5Oztorun N K, Citipitioglu E, Akkas N. Three-dimentional finite element analysis of shear wall buildings [J]. Computers and Structures, 1998, 68 (1-3): 41 -55.
  • 6Macneal R H, Harder R L. A refined four-noded membrane element with rotational degrees of freedom [J]. Computers and Structures, 1988, 28(1): 75-84.
  • 7龙驭球,陈晓明.两个抗畸变的四边形膜元[J].清华大学学报(自然科学版),2003,43(10):1380-1385. 被引量:9
  • 8陈晓明,岑松,宋德坡.采用面积坐标的抗畸变四边形曲边膜元[J].清华大学学报(自然科学版),2007,47(2):248-255. 被引量:4
  • 9傅向荣,龙驭球,袁明武.基于解析试函数的广义协调超基膜元[J].工程力学,2005,22(3):1-4. 被引量:5
  • 10Oztorun N K. A rectangular finite element formulation [J]. Finite Elements in Analysis and Design, 2006, 42(12): 1031 - 1052.

二级参考文献47

  • 1陈万吉 唐立民 等.参拟协调元[J].大连工学院学报,1981,20(1):63-74.
  • 2Andelfinger U, Ramm E. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements [J]. Int J Num Meth Eng, 1993, 36: 1311- 1337.
  • 3Piltner R, Taylor R L. A systematic constructions of B-bar functions for linear and nonlinear mixed-enhanced finite elements for plane elasticity problems [J]. Int J Num Meth Eng, 1997, 44: 615-639.
  • 4Bazeley G P, Cheung Y K, Irons B M, et al. Triangular elements in bending Conforming and non-conforming solutions [A]. Proc Conf Matrix Methods in Structural Mechanics [C]. Ohio, USA 1965.
  • 5Cook R D. Improved two-dimensional finite element [J]. J Struct Div, ASCE, 1974, 100ST9: 1851- 1863.
  • 6LONG Yuqiu, XU Yin. Generalized conforming triangular membrane element with vertex rigid rotational freedoms [J].Finite Element in Analysis and Design, 1994, 17:259 -271.
  • 7Bassayya K, Bhattacharya K, Shrinivasa U. Eight-node brick, PN340, representing constant stress fields exactly[J]. Computers & Structures, 2000, 74:441 - 460.
  • 8Lee N S, Bathe K J. Effects of element distortion on the performance of isoparametric elements [J]. Int J Num Meth Eng, 1993, 36: 3553-3576.
  • 9SOh Ai-Kah, Long Yuqiu, Cen Song. Development of eight-node quadrilateral membrane elements using the area coordinates method ['J']. Computational Mechanics, 2000,25:376 - 384.
  • 10MacNeal R H, Harder R L. A proposed standard set of problems to test finite element accuracy [J]. Finite Elements in Analysis and Design, 1985, 1:3-20.

共引文献34

同被引文献37

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部