期刊文献+

基于CBR和RBR混合推理的齿轮箱智能诊断技术 被引量:4

Fault Diagnosis Technology Based on CBR&RBR for Gearbox of the Rolling Mills
下载PDF
导出
摘要 针对传统齿轮箱智能诊断系统获取知识的困难,提出了基于案例(case-based reasoning,CBR)和规则(rule-based reasoning,RBR)混合推理方式的智能诊断技术.在研究此2种推理技术优缺点的基础上,取长补短,合理地将其应用到轧机齿轮箱故障诊断工作中,提高了故障诊断的准确率和效率.针对传统案例检索中相似度算法的不足之处,提出了一种新的案例检索算法,有效地解决了传统的相似度算法检索案例不准确的问题. Due to the difficulty of knowledge accessing in traditional gear-box intelligent diagnosis system, a diagnosis technology based on CBR (Case-based Reasoning) and RBR (Rule-based Reasoning) hybrid method was proposed in this paper. On the basis of analyzing the advantages and disadvantages of the two methods, the combination of the reasoning technologies was utilized in fault diagnosis of gearbox of rolling mills. As a result, the accuracy and efficiency of fault diagnosis were improved greatly. Due to the shortage in similarity algorithm in traditional retrieval, a new case retrieval algorithm was proposed. Therefore, the problem of inaccuracy in traditional similarity algorithm was solved effectively.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第9期1174-1180,共7页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(50705001)
关键词 轧机齿轮箱 智能诊断 案例推理 规则推理 gearbox of the rolling mills intelligent diagnosis case-based reasoning rule-based reasoning
  • 相关文献

参考文献10

二级参考文献44

共引文献83

同被引文献28

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部