摘要
讨论了商空间X/M中的继承性,得到了如下结论:1)定理1:设X是K一致凸(KUR)的Ba-nach空间且M是X的任意可逼近的子空间,则商空间X/M也是K一致凸(KUR)的空间.2)定理2:设X是接近一致凸(NUC)的Banach空间且M是X的任意可逼近的子空间,则商空间X/M也是接近一致凸(NUR)的空间.3)定理3:设X是中点局部一致凸(MLUR)的Banach空间且M是X的任意可逼近的子空间,则商空间X/M也是中点局部一致凸(MLUR)的空间.
The genetic character of the quotient space X/M is discussed and the following conclusion are given :1) theorem1:suppose X is K uniformly convexity (KUR) Banach space and M the approximation close space by X, then the quotient space X/M is also K uniformly convexity;2) theorem2: suppose X is nearly uniformly convexity and M the approximation close space ,then the quotient X/M is also nearly uniformly convexity (NUC);3) theorem 3:suppose X is MLUR Banach space and M the approximation close space ,then the quotient space X/M is also MULR.
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2009年第6期741-742,共2页
Journal of Harbin University of Commerce:Natural Sciences Edition
基金
黑龙江省教育厅海外学人科研资助项目(1152hq07)