期刊文献+

一类带Ivlev功能反应的捕食模型的共存态 被引量:1

Coexistence States of the Predator-prey Model with Ivlev's Functional Response
下载PDF
导出
摘要 讨论了一类带Ivlev功能反应的捕食模型分歧解的存在性及稳定性。运用谱分析和分歧理论的方法,讨论了共存解的结构,给出了正解存在的必要条件。运用线性算子的扰动理论和分歧解的稳定性理论证明了共存解的稳定性。 The existence and stability of the positive steady-state solutions to the predator-prey model with Ivlev's functional response are discussed.By applying spectral analysis and methods of bifurcation theory,the structure of the coexistence is discussed. The necessary conditions for the existence of the coexistence solutions are established; the stability for the coexistence solutions are obtained by the perturbation theorem for linear operators and the stability theorem for bifurcation solutions.
作者 查淑玲
出处 《科学技术与工程》 2010年第26期6383-6386,共4页 Science Technology and Engineering
基金 陕西省教育厅科研项目(10JK604) 渭南师范学院基金项目(10YKF016) 陕西省重点学科扶持项目资助
关键词 特征值 分歧 稳定性 eigenvalue bifurcation stability
  • 相关文献

参考文献2

二级参考文献15

  • 1Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol., 1975, 44(1): 331-340
  • 2DeAngelis D L, Goldstein 1% A, O'neill 1% V. A model for trophic interaction. Ecology, 1975, 56(2): 881-892
  • 3Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal., 1986, 17(6): 1339-1353
  • 4Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans. Araer. Math. Soc., 1997, 349(6): 2443-2475
  • 5Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc. R. Soc. Edinburgh Sect. A, 2001, 131(2): 321-349
  • 6Ye Q X, Li Z Y. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 1990
  • 7Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Spring-Verlag, 1983
  • 8Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues.J. Functional Analysis, 1971, 8(2): 321-340
  • 9Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Analysis, 2000, 39(7): 817-835
  • 10Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rational Mech. Anal., 1973, 52(2): 161-180

共引文献20

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部