期刊文献+

HL-Isomap+SVM在网络入侵检测中的应用 被引量:1

Anomaly network intrusion detection based on HL-Isomap and SVM
下载PDF
导出
摘要 支持向量机所具有的处理小样本和良好的推广能力的优势,在入侵检测中得到了广泛应用。考虑到数据特征的高维性和冗余性,特征提取是一个关键步骤。采用非线性流形学习算法L-Isomap对入侵检测数据进行特征选择,然后应用one-classSVM训练并识别异常。通过将异构值差度量(HVDM)距离代替欧几里德距离提出了HL-Isomap。选用KDD数据集来比较上述不同模型,实验结果表明了降维方法的有效性,尤其是误警率性能得到了显著的提高。 With great advantages in small sample and machine generalization ability,support vector machine has been widely applied in intrusion detection.Due to high dimensionality and redundancy of data,feature extraction is a crucial procedure.This paper proposes a scheme using popular non-linear dimension reduction tool L-Isomap and one-class support vector machine to detect intrusions.HL-Isomap is also proposed through replacing Euclidean metric with heterogeneous value difference metric.This paper evaluates different models with the KDD dataset.The experiment results show that the dimension reduction method is effective and the proposed model outperforms the conventional one-class SVM in false positive rate.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第28期85-87,共3页 Computer Engineering and Applications
基金 教育部科学技术研究重点(重大)项目No.107021~~
关键词 界标Isomap(L-Isomap) 支持向量机(SVM) 异构值差度量(HVDM) 入侵检测 Landmark-lsomap (L-Isomap) Support Vector Machine (SVM) Heterogeneous Value Difference Metric (HVDM) intrusion detection
  • 相关文献

参考文献12

  • 1Kemmerer R A, Vigna G.Intrusion detection: A brief history and overview[J].Computer,2002,35(4) :27-30.
  • 2Lazarevic A, Ertoz L, Kumar V, et al.A comparative study of anomaly detection schemes in network intrusion detection[C]// Proceedings of the Third SIAM Conference on Data Mining, May 2003.
  • 3Kim D S,Park J S.Network-based intrusion detection with support vector machines[C]//Kahng H K.ICOIN 2003,2003:747-756.
  • 4Luo M, Wang L N, Zhang H G.A research on intrusion detection based on unsupervised clustering and support vector machine[C]//Qing S, Gollmann D,Zhou J.LNCS2836:ICOIN 2003, 2003:325-336.
  • 5Mukkamlala S, Sung A H.Feature selection for intrusion detection with neural networks and support vector machines[J].Journal of the Transportation Research Board,2003 (1822) : 33-39.
  • 6Mukkamala S, Sung A H, Abraham A.Intrusion detection using an ensemble of intelligent paradigms[J].Journal of Network and Computer Applications,2005,28(2) : 167-182.
  • 7赵博,李永忠,杨鸽,徐静.改进SVM在入侵检测中的应用研究[J].计算机工程与应用,2009,45(17):102-104. 被引量:1
  • 8Tenenbaum J B, Silva V D, Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000(290) :2319-2323.
  • 9Scholkopf B,Platt J C,Shawe-Taylor J,et al.Estimating the support of a high-dimensional distribution,MSR-TR-99-87[R].Microsoft Research, 1999.
  • 10Silva V D, Tenenbaum J B.Global versus local methods in nonlinear dimensionality reduction[J].Proc NIPS, 2003 (15) : 721-728.

二级参考文献10

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部