期刊文献+

槽式太阳能有机朗肯循环热发电系统模拟 被引量:7

SIMULATION OF PARABOLIC TROUGH SOLAR THERMAL GENERATION WITH ORGANIC RANKINE CYCLE
原文传递
导出
摘要 本文借助TRNSYS软件建立了具有辅助锅炉,无蓄热和回热系统的典型槽式太阳能有机朗肯循环热发电系统,采用西安地区的气象参数作为输入,分析讨论了槽式集热器不同跟踪方式的差异、有机工质和蒸发温度对有机朗肯循环的效率和输出功率的影响、循环冷却水流量与输出功率的关系。模拟结果表明:在全年大部分时期,槽式集热器的南-北轴跟踪效率优于东-西轴跟踪;在相同条件下,采用蒸发温度高的有机工质,系统的输出功率和循环效率较好;对于不同的运行参数,存在一个最佳循环冷却水流量,使系统的净输出功率最大。 A typical parabolic trough solar thermal generation with organic rankine cycle model has been developed using the software TRNSYS in this paper. Meteorological data of city Xi'an is used for the model's input. Then the effects of different tracking modes, organic fluids and the mass flow rate of the cooling water on the output power and efficiency of the model are analyzed. It is shown that choosing the N-S tracking model makes the generation having a higher efficiency during the period from March to October. The efficiency of the generation using organic fluids which have a high evaporating temperature is higher than using the organic fluids which have a lower evaporating temperature under the same operating condition. There is a best mass flow rate of the cooling water which makes the generation having the most net output power under different operating condition.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第10期1631-1634,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点项目(No.50736005) 国家重点基础研究发展计划资助(973项目)(No.2010CB227102)
关键词 TRNSYS 太阳能热发电系统 槽式集热器 有机朗肯循环 TRNSYS solar thermal generation parabolic trough collector organic rankine cycle
  • 相关文献

参考文献4

  • 1HANK P, VAHAB H. Modulax Trough Power Plant Cycle and Systems Analysis [R]. NREL/TP-550-31240, 2002.
  • 2Lippke F. Simulation of the Part-Load Behavior of a 30 MWe SEGS Plant [R]. SAND95-1293, SandiaNational Laboratories, Albuquerque, NM, 1995.
  • 3Milton M R, Naum F, Chigueru T. Analytic Modelling of a Solar Power Plant with Parabolic Linear Collectors [J]. Journal of Solar Energy. 2009, 83:126-133.
  • 4杨世铭 陶文铨.传热学[M].北京:高等教育出版社,2003..

共引文献42

同被引文献73

  • 1周然,韩吉田,于泽庭.基于太阳能卡琳娜循环的冷热电联供系统热力学分析[J].制冷技术,2013,33(3):13-15. 被引量:8
  • 2王如竹,吴静怡,许煜雄.高效节电的空气能热泵热水器[J].上海电力,2004,17(6):500-502. 被引量:9
  • 3赵会霞,刘思光,马国远,刘忠宝.涡旋压缩机闪发器热泵系统的试验研究[J].太阳能学报,2006,27(4):377-381. 被引量:29
  • 4Goswami D Y.Solar thermal power-status and future directions [A]. Proceedings of the 2nd ASME-ISHMT Heat and Mass Transfer Conference[C], Mangalore, India, 1995.
  • 5Hong H, Zhao Y, Jin H. Proposed Partial Repowering of a Coal- Fired Power Plant Using Low-Grade Solar Thermal Energy[J]. International Journal of Thermodynamics, 2011, 14(1): 21 - 28.
  • 6Eck M, Hirsch T. Dynamics and control of parabolic trough collector loops with direct steam generation[J]. Solar Energy, 2007, 81(2): 268 - 279.
  • 7Schwarzbozl P, Buck R, Sugarmen C, et al. Solar gas turbine systems: Design, cost and perspectives[J]. Solar Energy, 2006, 80(10): 1231 - 1240.
  • 8Barigozzi G, Bonetti G, Franchini G, et al. Thermal performance prediction of a solar hybrid gas turbine[J]. Solar Energy, 2012, 86(7): 2116 - 2127.
  • 9Kelly B, Hermann U, Hale M. Optimization studies for integrated solar combined cycle systems[J]. Solar Engineering, 2001, 393 - 398.
  • 10Livshits M, Kribus A. Solar hybrid steam injection gas turbine (STIG) cycle[J]. Solar Energy, 2012, 86(1): 190 - 199.

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部