摘要
利用马尔可夫过程的理论和方法,模拟多级塔板上的液体随机流动现象.通过建立包含马尔可夫过程的多级塔板液体流动的数学模型,及对该模型进行数学推导,得到描述各级塔板出口液体停留时间分布数学解析式.在一定的实验条件下,测得液体停留时间分布的平均停留时间τ和方差σ,可得到各级塔板液体停留时间分布的具体计算式.实验证明,同时进入某一块塔板的液体,在该塔板上的液体停留时间基本符合正态分布.该模型模拟灵活方便,切合实际,能准确反映过程的实质.
The residence time of fluid entering a certain tray at the same time basicaly accords with normal distribution,as proved by experiment.The phenomenon of random fluid flow on multistage column trays is simulated by applying theory and method of Markov process.A mathematical model of fluid flow on multistage column trays containing Markov process is formed for mathematical derivation.And then,a formula of mathematical analysis is obtained for describing the distribution of residence time of fluid on the outlets of multistage column trays.Under a certain experimental conditions,the distribution of residence time of fluid is determined to be average residence time τ and variance σ,that is to say,a specific formula can be obtained for calculating distribution of residence time of fluid on each stage column tray.The authors′ model and simulation are flexible and convenient.They fit in with acutual circumstances,by which the essence of the process can be precisely reflected.
出处
《华侨大学学报(自然科学版)》
CAS
1999年第2期186-190,共5页
Journal of Huaqiao University(Natural Science)
关键词
塔板
液体流动
停留时间分布
马氏过程
column tray, fluid flow, distribution of residence time, Markov process