期刊文献+

Theoretical investigations of spectroscopic parameters and molecular constants for electronic ground state of Cl_2 and its isotopes

Theoretical investigations of spectroscopic parameters and molecular constants for electronic ground state of Cl_2 and its isotopes
原文传递
导出
摘要 The potential energy curve of the C12 (X1∑g+) is investigated by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with the largest correlation-consistent basis set, aug-cc-pV6Z, in the valence range. The theoretical spectroscopic parameters and the molecular constants of three isotopes, 35Cl2, 35Cl37Cl and 37Cl2, are studied. For the 35Cl2(X1∑g+), the values of Do, De, Re, We, we)we, ae and Be are obtained to be 2.3921 eV, 2.4264 eV, 0.19939 nm, 555.13 cm-1, 2.6772 cm-1, 0.001481 cm-1 and 0.24225 cm-1, respectively. For the 356137Cl(X1∑g+), the values of Do, De, Re, We, WeXe, ae and Be are calculated to be 2.3918 eV, 2.4257 eV, 0.19939 nm, 547.68 cm-1, 2.6234 cm-1, 0.00140 cm^1 and 0.23572 cm-1, respectively. And for the 37Cl2(X1∑g+), the values of Do, De, Re, We, WeXe, ae and Be are obtained to be 2.3923 eV, 2.4257 eV, 0.19939 nm, 540.06 cm-1, 2.5556 cm-1, 0.00139 cm-1 and 0.22919 cm-1, respectively. These spectroscopic results are in good agreement with the available experimental data. With the potential of Cl2 molecule determined at the MRCI/aug-cc-pV6Z level of theory, the total of 59 vibrational states is predicted for each isotope when the rotational quantum number J equals zero (J = 0). The theoretical vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined when J = 0, which are in excellent accordance with the available experimental findings. The potential energy curve of the C12 (X1∑g+) is investigated by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with the largest correlation-consistent basis set, aug-cc-pV6Z, in the valence range. The theoretical spectroscopic parameters and the molecular constants of three isotopes, 35Cl2, 35Cl37Cl and 37Cl2, are studied. For the 35Cl2(X1∑g+), the values of Do, De, Re, We, we)we, ae and Be are obtained to be 2.3921 eV, 2.4264 eV, 0.19939 nm, 555.13 cm-1, 2.6772 cm-1, 0.001481 cm-1 and 0.24225 cm-1, respectively. For the 356137Cl(X1∑g+), the values of Do, De, Re, We, WeXe, ae and Be are calculated to be 2.3918 eV, 2.4257 eV, 0.19939 nm, 547.68 cm-1, 2.6234 cm-1, 0.00140 cm^1 and 0.23572 cm-1, respectively. And for the 37Cl2(X1∑g+), the values of Do, De, Re, We, WeXe, ae and Be are obtained to be 2.3923 eV, 2.4257 eV, 0.19939 nm, 540.06 cm-1, 2.5556 cm-1, 0.00139 cm-1 and 0.22919 cm-1, respectively. These spectroscopic results are in good agreement with the available experimental data. With the potential of Cl2 molecule determined at the MRCI/aug-cc-pV6Z level of theory, the total of 59 vibrational states is predicted for each isotope when the rotational quantum number J equals zero (J = 0). The theoretical vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined when J = 0, which are in excellent accordance with the available experimental findings.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期236-244,共9页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064 and 60777012) the Program for Science and Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008) the Natural Science Foundation of Educational Bureau of Henan Province of China (Grant No. 2010B140013)
关键词 isotope effect spectroscopic parameter molecular constant vibrational level isotope effect, spectroscopic parameter, molecular constant, vibrational level
  • 相关文献

参考文献41

  • 1Martinez E 1986 J. Quantum Spectrosc. Radiat, Transfer. 35 401.
  • 2Coxon J A and Shanker R 1978 J. Mol. Spectrosc. 69 109.
  • 3Coxon J A 1971 J. Quantum Spectrosc. Radiat. Transfer. 11 443.
  • 4Coxon J A 1980 J. Mol. Spectrosc. 82 264.
  • 5Travnikova O, Fink R F, Kivimaki A, C6olin D, Bao Z and Piancastelli M N 2006 Chem. Phys. Lett. 426 452.
  • 6Bermejo D, Jimanez J J and Martinez R Z 2002 J. Mol. Spectrosc. 212 186.
  • 7Douglas A E and Hoy A R 1975 Can. J. Phys. 53 1965.
  • 8Le Roy R J and Bernstein R B 1971 J. Mol. Spectrosc. 37 109.
  • 9Hochenbleicher G and Schrotter H W 1971 Appl. Spectrosc. 25 360.
  • 10Le Roy R J and Bernstein R B 1970 Chem. Phys. Lett. 5 42.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部