期刊文献+

元启发式数据关联的多目标跟踪方法 被引量:4

Multiple target tracking method based on metaheuristic data association
下载PDF
导出
摘要 提出了一种元启发式数据关联的多目标跟踪方法。首先,该方法根据跟踪门逻辑确定目标的有效量测。然后,利用滤波信息的似然函数描述量测点与目标之间的关联关系,并建立约束条件下多目标数据关联模型。最后,对蚁群优化算法进行改进设计,引入量测剔除策略,将求解问题转化为无约束的组合优化形式,从而利用蚁群优化算法在离散空间的启发式机制搜索量测与目标的最佳关联。仿真结果表明,该方法可以有效实现多目标数据关联且计算量较小,具有一定的工程实用价值。 A multiple target tracking method based on metaheuristic data association is proposed.Firstly,the tracking gate logic is used to confirm the effective measurements.Then,the association relation between measurements and targets is described by the likelihood function of filter innovation,and the multiple targets data association model is estabilished under constraints.Basis of which,a measurement the elimination way is adopted,and the ant colony optimization(ACO) algorithm is designed to translate the data association problem to be solved into the form of combination optimization problem without constraints.After that,the metaheuristically searching ability of the ACO alorithm is used to search the optimal association in discrete area.The simulation results prove that the metaheuristic method,which has less computation,is reasonable and effective for data association and has the engineering application value.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第10期2176-2180,共5页 Systems Engineering and Electronics
基金 "十一五"国防预研基金(KJ-050402011) 航空科学基金(20085196011)资助课题
关键词 元启发式 数据关联 多目标跟踪 蚁群优化 metaheuristic data association multiple target tracking ant colony optimization(ACO)
  • 相关文献

参考文献10

  • 1Gad A,Majdi F,Farooq M.A comparison of data association techniques for target tracking in clutter[C] ∥Proc.of IEEE the 5th International Conference on Information Fusion,2002:1126-1133.
  • 2艾剑良,沈键,艾玲英.密集杂波环境下多目标跟踪算法[J].系统工程与电子技术,2004,26(9):1271-1272. 被引量:2
  • 3Juang D J,Hu K C,Lee M L,et al.Extended neural network solution of radar tracking problems[C] ∥Proc.of IEEE Region 10 Conference,TENCON,2007:1-4.
  • 4Kirubarajan T,Bar-Shalom Y.Probabilistic data association techniques for target tracking in clutter[C] ∥Proc.of IEEE,2004,92(3):536-557.
  • 5管旭军,周旭,芮国胜.集中式多传感器无极联合概率数据互联算法[J].系统工程与电子技术,2009,31(11):2602-2606. 被引量:4
  • 6Muki D,Wang X Z.Track management and PMHT[C] ∥Proc.of IEEE 10th International Conference on Information Fusion,2007:1-5.
  • 7Frank O,Nicto J,Guivant J,et al.Multiple target tracking using sequential mento carlo methods and statistical data association[C] ∥Proc.of IEEE International Conference on Intelligent Robots and Systems,2003:2718-2723.
  • 8Blackman S S.Multiple hypothesis tracking for multiple target tracking[J].IEEE Trans.on Aerospace and Elecronic Systems,2009,19(1):5-18.
  • 9Jida B,Lherbier R,Wahl M,et al.Bayesican networks and probabilistic data association method for multi-object tracking:application to road safty[C] ∥Proc.of IEEE the 3th International Conference on Information and Communication Technologies:from Theory to Applications,Damascus,2008:1-6.
  • 10康莉,谢维信,黄敬雄.基于蚁群算法的多目标跟踪方法[J].系统工程与电子技术,2008,30(9):1782-1784. 被引量:5

二级参考文献26

  • 1修建娟,何友,修建华.多目标纯方位定位和跟踪[J].现代雷达,2004,26(8):45-48. 被引量:8
  • 2张晶炜,熊伟,何友.几种简化联合概率数据互联算法性能分析[J].系统工程与电子技术,2005,27(10):1807-1810. 被引量:7
  • 3Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering[J]. Statistics and Computing, 2000(10): 197-208.
  • 4Anderson B, Moore J. Optimal filtering [M]. Englewood Cliffs, Prentice Hall, New Jersy, 1979.
  • 5Reid D. An algorithm for tracking multiple target[J].IEEE Trans. on Automat. Contr. , 1979, 24 (6) : 84 - 90.
  • 6Blackman S, Popoli R. Design and analysis of modern tracking systems[M]. Boston: Artech House, 1999.
  • 7Dorigo M, Gambardell L M. Ant colony system: a cooperative learningapproach to the traveling salesman problem[J]. IEEE Trans. on Evolutionary Computation, 1997,1(1) : 53 - 66.
  • 8Dorigo M, Caro G D. Ant algorithms for discrete optimization[J].Artificial Life, 1999, 5(3) : 137 - 172.
  • 9Dorigo M, Gambardella L M. Ant colonies for the travelling salesman problem[J].Biosystems, 1997(43) :73 - 81.
  • 10Colorni A. Ant system for job-shop seheduling[J]. JORBEL, 1994, 34(1):39-53.

共引文献8

同被引文献46

  • 1高尚,韩斌,吴小俊,杨静宇.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,19(11):1286-1289. 被引量:73
  • 2辛云宏,杨万海.被动多站多目标的测量数据关联算法研究[J].宇航学报,2005,26(6):748-752. 被引量:24
  • 3马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2.
  • 4司锡才,陈玉坤,李志刚.数据关联算法的研究[J].哈尔滨工程大学学报,2007,28(7):813-817. 被引量:12
  • 5Poore A B, Gadaleta S. Some assignment problems arising from multiple target tracking [ J ]. Mathematical and Com- puter Modeling,2006,43 (9) : 1074-1091.
  • 6Musicki D, Scala B L.Multi-target tracking in clutter wi- thout measurement assignment [ J]. IEEE Transactions on Aerospace and Electronic System ,2008 ,dd (3) :877-896.
  • 7Deb S, Yeddannpudi M, Pattiip K R. A generalized S-D assignment algorithm for multisensor-multitarget state estimation [ J ]. IEEE Transactions on Aerospace and Elec- tronic System, 1977,33 (2) :523-538.
  • 8Shi Xiao-hu, Liang Yan-chun, Lee H P, et al. Particle swarm optimization-based algorithms for TSP and genera- lized TSP [ J ]. Information Processing Letters, 2007,103 (5) :169-176.
  • 9Liu Fei, Zeng Guang-zhou. Study of genetic algorithm with reinforcement learning to solve the TSP [ J ]. Expert Sys- tems with Applications, 2009,36 ( 3 ) : 6995- 7001.
  • 10Ahmed A1-Ani. Feature subset selection using ant colony optimization [ J]. International Journal of Computation In- telligence ,2005,2( 1 ) :53-58.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部