期刊文献+

Ni-ZrO_2纳米复合电铸层组织结构及磨损形貌 被引量:4

Microstructure and Morphology of Worn Surface of Ni-ZrO_2 Nano-composite Electroformings
下载PDF
导出
摘要 通过复合电铸工艺制备Ni-ZrO2纳米复合电铸层,用SEM和TEM对其表面形貌、组织结构进行了分析。研究了镀液中纳米颗粒悬浮量对纳米复合电铸层在干摩擦状态下耐磨性的影响,并观察了纳米复合电铸层磨损后的表面形貌,探讨了磨损机理。结果表明:纳米ZrO2颗粒细化了基质金属的晶粒,使复合电铸层表面光滑平整;复合电铸层由微Ni单晶和多晶以及ZrO2颗粒所组成;纳米颗粒的强化作用使复合电铸层表现出优良的耐磨性,耐磨性的高低取决于纳米颗粒的复合量。 The Ni-ZrO2 nano-composite electroformings were prepared by composite electroforming.The surface morphology and microstructure were analyzed by SEM and TEM.Under dry friction conditions,the effect of nano-particle content in solution on the wear resistance of the nano-composite electroformings was studied.Furthermore,the surface morphology of worn surface and abrasion mechanism were investigated.The study results show that owing to the existence of nano-ZrO2 particles in the composite electroformings,the grain size of the metallic matrix is decreased greatly,and the nano-composite electroformings has a flat surface and compact microstructure.The nano-composite electroformings are composed by Ni single crystal and polycrystal,nano-ZrO2 particles.Because of the strengthening effect of nano-particle,nano-composite electroformings exhibit an excellent wear resistance,and changes in their abrasion mechanism take place.The wear resistance of nano-composite electroformings depends on nano-particle content in them.
出处 《表面技术》 EI CAS CSCD 北大核心 2010年第4期21-24,共4页 Surface Technology
基金 江苏省高校自然科学重大基础研究资助项目(09KJA460001)
关键词 纳米复合电铸层 表面形貌 微观结构 耐磨性 磨损机理 nano-composite electroforming surface morphology microstructure wear resistance abrasion mechanism
  • 相关文献

参考文献6

二级参考文献22

  • 1彭晓,李铁藩,于瀛大,徐淑华,关若男,李日升.La_2O_3弥散强化的扩散渗铝涂层的氧化行为研究[J].中国稀土学报,1993,11(4):373-375. 被引量:6
  • 2于思荣,何镇明,刘耀辉.锌合金复合材料的研究现状[J].特种铸造及有色合金,1994,14(4):20-22. 被引量:13
  • 3马洁,蒋雄,江琳才,吕曼祺.球磨形成的Ni-Mo纳米晶复合镀层上的析氢反应[J].物理化学学报,1996,12(1):22-28. 被引量:14
  • 4董允.电沉积Ni-W-Co合金及其复合材料摩擦学特性研究[M].北京:中国矿业大学北京研究生部,1995..
  • 5[2]Treacy M M J, Ebbesen W, Gibson J M. Exceptionally high Youngs modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381: 678-680.
  • 6[3]Wong W E, Sheehan P E, Lieber C M. Nanobeam mechanics-elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277: 1971-1975.
  • 7[4]Xu C L, Wei B Q, Ma R Z, et al. Fabrication of aluminium-carbon nanotube composites and their electrical properties[J]. Carbon, 1999, 37(5): 855-858.
  • 8[6]Chen X H, Deng F M, Lu X N, et al. Carbon nanotubes Ni composite coating with high wear ability[A]. GAO Wan-zhen, LI Jian. 3rd International Symposium on Tribo-fatigue[C]. Changsha: Hunan University Press, 2000.
  • 9[11]Trzaskoma P P. Pit morphology of aluminium and silicon carbide/aluminium alloy metal matrix composites [J]. Corrosion, 1990, 46(5): 402-409.
  • 10[12]Mcintryre J F, Conrad R K, Golledge S L. The effect of heat treatment on the pitting behavior of SiCw/Al2124[J]. Corrosion, 1990, 46(11): 902-905.

共引文献134

同被引文献51

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部