期刊文献+

局部非线性轴系振动稳态响应计算方法

Method for Calculating Steady Vibration Response of Shafting with Local Nonlinearity
下载PDF
导出
摘要 对有非线性迟滞特性联轴器的船舶推进轴系振动稳态响应计算方法进行研究。在计入联轴器非线性动刚度和迟滞非线性动阻尼的情况下,以GLM(Galerki-Levenberg-Marquard)法为基础,提出一种称为SSGILM(SeparateSystem—GalerkinandImprovedLevenberg-Marquardt)的方法,用于计算局部具有非线性动刚度和迟滞阻尼特性轴系的振动稳态响应。一简单实例的计算和结果分析表明,用SSGILM法编制的程序可以有效地计算局部具有非线性动刚度和迟滞阻尼特性轴系的振动稳态响应。从任意给定的响应初始值出发,自动逼近搜索可以很快地收敛于满足精度的响应值;联轴器的非线性动刚度和迟滞阻尼特性对圆盘振动的影响,在不同的频率段有不同的效果,在轴系固有频率附近区域内,使圆盘振动位移幅值增大,在轴系固有频率附近区域外,对圆盘振动具有抑制作用。 A method which is used for calculating steady vibration response of shipping propulsion shafting connecting with a coupling with nonlinear hysteresis characteristics are studied. On condition that the nonlinear dynamic stiffness and hysteresis damping of the coupling be considered, on the basis of GLM(Galerki Levenberg Marquard) method, a method called SSGILM(Separate System Galerkin and Improved Levenberg-Marquardt)to be used for calculating steady vibration response of propulsion shafting with local nonlinear dynamic stiffness and hysteresis damping, is proposed. A simple example is given out and the analyses show that it is effective to calculate steady vibration response of the shafting with local nonlinear dynamic stiffness and hysteresis damping by SSGILM method. From initial response values given arbitrarily, the automatic search algorithm in SSGILM method can converge the given initial response values to the response values accorded with required accuracy quickly; nonlinear dynamic stiffness and hysteresis damping of the coupling have different effect on vibration response of the shafting at different range of frequency. At the area of close nature frequency of the shafting ,displacement amplitude of the shafting is bigger. Beyond the range, the characteristics of the coupling have restraint effect on vibration of the shafting.
作者 龚宪生
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 1999年第3期15-23,共9页 Journal of Chongqing University
基金 国家教育部博士点专项基金
关键词 轴系 稳态响应 船舶 推进轴系 振动 联轴器 nonlinearity shafting steady response calculating method
  • 相关文献

参考文献7

  • 1王人德.非线性方程解法最优化方法[M].北京:人民出版社,1979.59-125.
  • 2龚宪生,重庆大学学报,1996年,19卷,5期,30页
  • 3Wong C W,Int J Anal Expe Model Anal,1993年,8卷,1期,63页
  • 4Wei S T,J Sound Vibration,1987年,129卷,3期,397页
  • 5谢如彪,非线性数值分析,1984年,73页
  • 6王德仁,非线性方程组解法及最优化方法,1979年,59页
  • 7龚宪生,赵玫,骆振黄.钢丝绳联轴器迟滞特性的建模与参数辨识[J].重庆大学学报(自然科学版),1996,19(5):30-36. 被引量:6

二级参考文献6

  • 1陈乃立,童忠钫.非线性迟滞系统的参数分离识别[J].振动与冲击,1994,13(4):7-14. 被引量:22
  • 2Ko J M,Int J Anal Exp Modal Anal,1992年,7卷,2期,111页
  • 3胡海岩,振动工程学报,1989年,6期,17页
  • 4胡海岩,振动与动态测试,1988年,2期,1页
  • 5Lo H R,Proc 4th IMAC,1986年
  • 6Wen Y K,J Engineering Mechanics Division,1976年,12期,249页

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部