期刊文献+

基于核Bayes分类函数的KPCA与KFDA算法稳定性

Stability of KPCA and KFDA Based on Kernel Bayes Classifier
下载PDF
导出
摘要 为了得到核Bayes函数作为分类器的核主元分析(KPCA)与核Fisher判据分析(KFDA)的算法模式稳定性,利用Rademacher复杂度的概念及相关定理,推导出了核Bayes函数Rademacher复杂度的界以及其作为分类器的算法发生错误分类的概率的界,说明了模式稳定性与样本长度、降维矩阵的维数等关系,提出了两种衡量模式稳定性的直观指标,误分差和百分比和误分均值偏离度.仿真结果不仅验证了几个定理,也表明所提出的衡量指标是有效的、可行的. It is obtained pattern stability of KPCA and KFDA algorithm which use kernel Bayes function as classifier.Firstly,the concept of Rademacher complexity and several theorems are introduced.Then,the upper bounds of Rademacher complexity of kernel Bayes function is deduced,and the upper bound of mis-classification probability which uses kernel Bayes function as classifier is obtained.Also,two indexes which measure pattern stability are proposed.One is ratio of mis-classification differences summation,the other is deviation ratio of mis-classification mean.Simulation results not only verify the deduced theorem,but also indicate that the proposed measure indexes are effective and practicable.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2010年第3期16-21,共6页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(60634030 60702066) 高校博士点专项基金资助项目(20060699032)
关键词 模式稳定性 核Bayes函数 核主元分析 核Fisher判据分析 Rademacher复杂度 pattern stability kernel Bayes function kernel principal component analysis(KPCA) kernel Fisher discriminant analysis(KFDA) Rademacher complexity
  • 相关文献

参考文献8

  • 1陈将宏.Rademacher复杂性与支持向量机学习风险[J].湖北大学学报(自然科学版),2005,27(2):126-129. 被引量:1
  • 2MENDELSON S. A few notes on statistical learning theory [ M]. New York: Lecture Notes in Computer Science , Springer, 2003.
  • 3MENDELSON S, SMOLA A J. Advanced lectures in machine learning, volume 2 600 of lecture notes in computer science[M]. NewYork : Springer, 2003 : 1-40.
  • 4YU C M, PAN Q, CHENG Y M, et al. A Kernel-Based bayesian classifier for fault detection and classification[ C]//Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Chongqing, 2008,124-128.
  • 5于春梅,潘泉,程咏梅,张洪才.正则化FDA的核化及与SVM的比较研究[J].计算机应用研究,2010,27(3):897-898. 被引量:1
  • 6YU C M, PAN Q, CHENG Y M, et al. Small sample size problem of fault diagnosis for process industry:IEEE ICCA10 Xiamen, China, June 9-11,2010[ C ]. Xiamen : Xiamen University Press, 2010.
  • 7PETER L, BARTLErlT, MENDELSON S. Rademacher and gaussian complexities:risk bounds and structural results[ J ]. Journal of Machine Learning Research, 2002, (3) :463-482.
  • 8JOHN SHAWE-TAYLOR, NELLO CRISTIANINI. Kernel methods for pattern analysis (影印版)[M].北京:机械工业出版社,2005.

二级参考文献18

  • 1孙平,徐宗本,申建中.基于核化原理的非线性典型相关判别分析[J].计算机学报,2004,27(6):789-795. 被引量:11
  • 2许建华,张学工.经典线性算法的非线性核形式[J].控制与决策,2006,21(1):1-6. 被引量:12
  • 3MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels[ C ]//Proc of IEEE Signal Processing Society Workshop. 1999 :41-48.
  • 4YE Jie-ping, CHEN Jian-hui, JI Shui-wang. Discriminant kernel and regularization parameter learning via semidefinite programming [ C ]// Proc of the 24th International Conference on Machine Learning. 2007 : 1095-1102.
  • 5O'SULLIVAN F. A statistical perspective on ill-posed inverse problems[ J]. Statistical Science, 1986,1 (4) :502-527.
  • 6CHEN W S, YUEN P C, HUANG J, et al. Kernel machine-based one-parameter regularized Fisher discriminant method for face recognition[J]. IEEE Trans on Systems, Man and Cybernetics, 2005, 35(4) :659-669.
  • 7GESTEL T V, SUYKENS J A K, LANCKRIET G, et al. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis [ J ]. Neural Computation, 2002,14 ( 5 ) : 1115-1147.
  • 8XU Jian-hua, ZHANG Xue-gong, LI Yan-da. Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR [ C ]//Proc of International Joint Conference on Neural Networks. New York: IEEE Press, 2001 : 1486-1491.
  • 9BRAATZ R. Soflware[ EP/OL]. http ://brahms. scs. uiuc. edu.
  • 10XIONG Tao, CHERKASSKY V. A combined SVM and LDA approach for classification [ C ]//Proc of International Joint Conference on Neural Networks. 2005 : 1455-1459.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部