期刊文献+

应用于非均匀性校正的改进的神经网络算法 被引量:6

Improved algorithm of neural network using in non-uniformity correction
下载PDF
导出
摘要 非制冷红外焦平面的非均匀性对红外系统的图像质量造成严重影响。神经网络的自适应调节性优于传统的定标校正方法,成为研究热点。但是传统的神经网络存在期望值不准确、误差函数精度不高和学习速度不适应网络变化的缺点。本文将目标像元与其4邻近像元的像素值进行比较,按偏差值的大小进行排序,再增加权系数来计算期望值;文章又分析了神经网络出现的局部极小问题,在原有的误差函数基础上引入了隐层饱和度的计算式;并提出了根据总误差值之比来调节学习速度。经仿真实验表明,新算法较好地降低了非均匀度。 The non-uniformity of URPA has serious effects on image qualities of infrared system.The adaptive control ability of neural network,which is superior to traditional calibration algorithm is becoming a focus.However,the traditional way has some disadvantages,such as the inaccuracy of expected value,the short precision of error function and the learning rate which is not adapted to the changing of network.In this paper,we compare the target pixel with other four pixels arounding the target one,sort them according to the values of differences,then count expected values by adding weight coefficients.In the article,we also analysis the problem of extreme minimal in some parts in the neural network,introduce a counting function of hidden layer saturation on the basis of the original error function,and propose that moderating the learning rate according to ratio of error values.The simulating experiment indicates that the new algorithm fairly reduces the non-uniformity.
作者 郑德忠 孙涛
出处 《激光与红外》 CAS CSCD 北大核心 2010年第10期1111-1115,共5页 Laser & Infrared
基金 河北省科学技术研究与发展计划项目(No.05213503D)资助
关键词 非均匀性 神经网络 误差比较 自适应调节 non-uniformity neural network errors comparison adaptive moderate ability
  • 相关文献

参考文献8

二级参考文献40

共引文献35

同被引文献53

  • 1赵广州,张天序,王新赛,桑农.基于DSP和FPGA的模块化实时图像处理系统设计[J].华中科技大学学报(自然科学版),2004,32(10):4-6. 被引量:16
  • 2赵瑞珍,胡占义.太阳射电爆发中图像网纹消除的小波NeighShrink方法[J].光谱学与光谱分析,2007,27(1):198-201. 被引量:6
  • 3国家技术监督局.红外焦平面阵列特性参量测试技术规范(GB/T17444-1998)[M].北京:中国标准出版社,1998.
  • 4胡上尉,刘琼荪,刘佳璐,孙海雷.基于修改误差函数新的BP学习算法[J].系统仿真学报,2007,19(19):4591-4593. 被引量:10
  • 5D A Scribner, K A Sarkady, J T Caulfield, et al. Nonuni-formity correction for staring IR focal plane arrays using scene-based techniques[ C ]. Infrared Detectors and Focal Plane Arrays, SPIE, 1990,1308 ( 1 ) :224 - 233.
  • 6D A Scribner, K Asarkady, M R Kruer, et al. Adaptive retina-like preprocessing for imaging detector arrays[ C ]. Proc. IEEE, 1993 : 1955 - 1960.
  • 7J Harris, Y Chiang. Non-uniformity correction of infrared image sequences using the constant-statistics constraint [J]. IEEE Transactions on Image Processing, 1999, 8 (8) :1148 -1151.
  • 8C Zuo, Q Chen, G H Gu, et al. Scene-based nonuniformity correction method using muhiscale constant statistics[ J]. Opt Eng,2011,50 ( 8 ) :0570061 - 05700611.
  • 9D A scribner, K A sarkady, M R Kruer, et al. Adaptive nonuniformity correction for IR focal-plane arrays using neural networks [ C ]. Infrared Sensors: Detectors, Electronics, and Signal Processing, SPIE, 1991,1541 ( 1 ) : 100 - 109.
  • 10R C Hardie, M M Hayat, E E Armstrong, et al. Scene based non-uniformity correction using video sequences and registration[ J]. Appl. Opt. ,2000,39 : 1241 - 1250.

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部