摘要
[Objective]The study was to analyze the expression of the deletion fragments from the promoter of a glycosyltransferase gene induced both by MeJA and SA cloned from tobacco W38(sm-Ngt) in transgenic tobacco plants.[Method]Using T1 seedlings of sm-Ngt transgenic tobacco lines containing Gus gene controlled by five 5' flank deletion promoter fragments different in length as experimental materials,GUS histochemical staining and fluorometric analysis of T1 seedlings treated with MeJA and SA for 16 h were conducted to analyze the effect of MeJA and SA treatment on the expression of 5' flank deletion promoter fragments.[Result]Of five 5' flank deletion promoter fragments transgenic plant lines,30 d old T1 seedlings containing 220-0 bp promoter fragment performed worst in GUS staining(showing least staining spots),those containing-524-0 bp and-468-0 bp promoter fragment both performed best.In the plants not treated with MeJA and SA,activities of GUS driven by-524-0 bp and-468-0 bp deletion promoter fragments were enormously higher than that driven by-1 150-0,-800-0 or-220 0 bp,and which were proved to be not resulted from insert copy number by Southern blot.For GUS expression,promoter fragment-800-0 bp expression was doubly induced by both MeJA and SA,while fragment-1 150-0 was induced by MeJA.[Conclusion]There are activity enhancement elements within-524--220 bp of the sm-Ngt in promoter and activity down regulation elements within-1 150--524 bp region,as well as MeJA and SA doubly inducing activity regulation elements in this promoter.
[目的]研究从烟草中克隆的1个受水杨酸和茉莉酸甲酯诱导表达的新的糖基转移酶基因(sm-Ngt)启动子部分缺失片段在烟草中的表达。[方法]以转sm-Ngt5个不同长度的5’端缺失的启动子与Gus基因融合植物表达载体的T1代转基因植株为材料,用茉莉酸甲酯(MeJA)和水杨酸(SA)处理16h后分别进行GUS组织化学染色和荧光定量法测定GUS酶活性,分析水杨酸和茉莉酸甲酯对sm-Ngt5个不同长度的5’端缺失的启动子表达的影响。[结果]在5个不同缺失片段启动子的转基因T1代生长30d的植株中,转-220~0bp片段的GUS染色最少,转-524~0bp及-468~0bp片段的染色最深。在没有MeJA和SA诱导处理时,-524~0bp和-468~0bp2个启动子片段启动的GUS活性最高,远高于-1150~0、-800~0、-220~0bp片段的活性,并且不是由于基因拷贝数而引起的(Southern杂交结果);-800~0bp启动子片段启动的GUS活性受到MeJA和SA双重诱导,-1150~0bp启动子片段启动的GUS活性受到MeJA的诱导。[结论]在sm-Ngt启动子的-524~-220bp存在提高启动子活性调控元件,-1150~-524bp存在抑制启动子活性的序列,并且存在MeJA和SA双重诱导启动子活性调控元件。
基金
Supported by Natural Science Foundation of Hubei Province(2004ABA123)~~