期刊文献+

核正交UDP及其在人脸识别中的应用 被引量:2

Kernel Orthogonal Unsupervised Discriminant Projection with Applications to Face Recognition
下载PDF
导出
摘要 针对人脸识别中的特征提取问题,对原始的非监督判别映射(UDP)算法进行了改进,提出一种基于核正交UDP的人脸识别算法.利用核的方法提取人脸图像中的非线性信息,并将其投影在一个高维非线性空间;在加入基向量正交的约束后,通过能够保持人脸图像局部几何结构的UDP算法作一个线性映射,以求取算法的正交基向量.该算法中,采用核方法可以更好地提取人脸非线性结构特征,正交基向量则可以更好地保留非线性子流形空间与度量结构有关的信息,增强了算法的识别性能.最后,通过在ORL和PIE人脸库上的人脸识别实验验证了文中算法的有效性. In view of the problems of feature extraction in face recognition,an improved version of unsupervised discriminant projection(UDP) named kernel orthogonal unsupervised discriminant projection is proposed in this paper.First the nonlinear information in face images is extracted by the kernel trick and mapped into a high dimensional nonlinear space.Then a linear transformation which produces orthogonal basis vectors is performed to preserve locality of the geometric structure of the face images.The kernel trick helps obtain nonlinear structure features and the orthogonal basis vectors help preserve the information of nonlinear sub-manifold space related to the metric structure.Experiments on ORL and PIE face database demonstrate the effectiveness of the proposed algorithm.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第10期1783-1787,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2009AA04Z215) 国家自然科学基金(60803036)
关键词 子空间 非监督判别映射 流形 核正交非监督判别映射 人脸识别 subspace unsupervised discriminant projection manifold kernel orthogonal unsupervised discriminant projection face recognition
  • 相关文献

参考文献12

二级参考文献53

  • 1祝磊,朱善安.KSLPP:新的人脸识别算法[J].浙江大学学报(工学版),2007,41(7):1066-1069. 被引量:11
  • 2Turk M and Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 72-86.
  • 3Belhumeur P N, Hespanha J P, and Kriegman D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 4Bengio Y, Palement J, and Vincent P, et al.. Out-of-sample extensions for LLE, Isomap, MOS, eigenmaps, and spectral clustering. Advances in Neural Information Processing Systems 6. Cambridge, MA: MIT Press, 2003: 177.
  • 5Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 6Belkin M and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 14, Vancouver: MIT Press, 2001: 585-591.
  • 7Yang M H, Ahuja N, and Kriegman D. Face recognition using kernel Eigenfaces. Proceedings of International Conference on Image Processing, Vancouver, Canada, September 2000:37-40.
  • 8SchCilkopf B, Smola A, and Mtlller K R. Nonlinear component analysis as a kernel eigenvalues problem. Neural Computation, 1998, 10(5): 1299-1319.
  • 9He Xiaofei and Yah Shuicheng, et al.. Face recognition using laplacianfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 10Deng Cai, He Xiaofei, and Han Lianwei, et al.. Orthogonal Laplacianfaces for face recognition. IEEE Trans. on Image Processing, 2006, 15(11): 3608-3614.

共引文献45

同被引文献17

  • 1陈绵书,陈贺新,刘伟.一种新的求解无相关鉴别矢量集方法[J].计算机学报,2004,27(7):913-917. 被引量:10
  • 2庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 3Turk M, Pentland A.Eigenface for recognition[J].Joumal of Cognitive Neuroscience, 1991,3( 1 ) :72-86.
  • 4Belhumeur P, Hespanha J, Kriegmand D.Eigenfaces vs. Fisherfaces:recognition using class specific linear projec- tion[J].Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 5Tenenbaum J B, Desilva V, Langford J C.A global geo- metric framework for nonlinear dimensionality reduction[J]. Science, 2000,290(5500) : 2319-2323.
  • 6Roweiss L, Saul L.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000, 290 (5500) : 2323-2326.
  • 7Belkin M,Niyogi P.Laplacian eigenmaps for dimension- ality reduction and data representation[J].Ncural Compu- tation,2003,15(6) : 1373-1396.
  • 8Bengio Y, Palement J,Vincent P,et al.Out-of-sample exten- sions for LLE, isomap, MDS, eigenmaps, and spectral clustering[J].Neural Computation, 2004, 16 ( 10 ) : 2179-2219.
  • 9He Xiaofei,Yan Shuicheng,Hu Yuxiao,et aI.Face recog- nition using Laplacianfaces[J].IEEE Trans on Pattern Analy- sis and Machine intelligence, 2005,27 (3) : 328-340.
  • 10Yan Shuicheng, Xu Dong, Zhang Benyu, et al.Graph embed- ding and extensions:a general framework for dimension- ality reduction[J].lEEE Trans on Pattern Analysis and Machine Intelligence, 2007,29( 1 ) :40-51.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部