期刊文献+

再生水环境中304不锈钢生物膜腐蚀电化学特征 被引量:14

Characteristics of the Microbiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment
下载PDF
导出
摘要 研究了以再生水作为循环冷却系统补水的北京某热电厂冷却塔底粘泥中分离纯化培养出来的硫酸盐还原菌(SRB)生长特性.采用原子力显微镜(AFM)、扫描电镜(SEM)、能谱分析仪(EDS)和电化学交流阻抗(EIS)方法研究了304不锈钢(SS304)表面生物膜特征及其主要成分和不锈钢/生物膜界面电化学行为.结果显示,再生水环境下304不锈钢表面形成的生物膜是由吸附的SRB菌体及以含碳有机物为主的胞外聚合物和FeS腐蚀产物构成.浸泡前期(前7 d)SS304电极表面阻抗值主要由SS304表面钝化膜的贡献;浸泡后期(14 d后),电极体系阻抗值由不锈钢表面钝化膜和生物膜共同贡献. The growth characteristics of sulfate reducing bacteria(SRB) in real reclaimed water were studied.Characteristics of the biofilm and its main components on the surface of stainless steel 304(SS304) sample immersed in reclaimed water with SRB,the electrochemical behavior of the interface between the SS304 sample and the biofilm were investigated using atomic force microscopy(AFM),scanning electron microscopy(SEM),energy disperse spectroscopy(EDS),and electrochemical impedance spectroscopy(EIS).The results show that this strain of SRB can survive in reclaimed water.A biofilm formed on the surface of SS304 and consisted of microbial cells,a carbohydrate component from extracellular polymeric substances(EPS) and a corrosion product such as FeS.During the early immersion period(before 7d),the impedance value mainly originated from the contribution of passivation film on the SS304 electrode surface.During the later immersion period(after 14 d),the impedance value was mainly due to the combined effect of the passivation film and the biofilm on the SS304 electrode surface.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2010年第10期2638-2646,共9页 Acta Physico-Chimica Sinica
基金 大唐国际发电股份有限公司项目(TX06-15)资助~~
关键词 再生水 304不锈钢 硫酸盐还原菌 生物膜 原子力显微镜 交流阻抗谱 Reclaimed water Stainless steel 304 Sulfate reducing bacteria Biofilm AFM EIS
  • 相关文献

参考文献23

  • 1Beech,I.B.;Sunner,J.Biocorrosion,2004,15:181.
  • 2Moreno,D.A.;Ibars,J.R.;Ranninger,C.;Videla,H.A.Corrosion,1992,48(3):226.
  • 3Stott,J.F.D.Corrosion Sci.,1993,35:667.
  • 4Wingender,J.;Neu,T.R.;Flemming,H.C.Microbial extracellular polymerics substances:characterisation,structure and function.Berlin:Springer Press,1999.
  • 5Sheng,X.X.;Ting,Y.P.;Pehkonen,S.O.Corrosion Sci.,2007,49:2159.
  • 6Dexter,S.C.Corrosion test and standard:application and interpretation.In:Baboian,R.ASTM.Philadephia:PA,1995.
  • 7Dubiel,M.;Hsu,C.H.;Chien,C.C.;Mansfeld,F.;Newman,D.F.Appl.Environ.Microbiol.,2002,19(1):65.
  • 8Gonzaˊlez,J.E.G.;Santana,F.J.H.;Mirza-Rosca,J.C.Corrosion Sci.,1998,40:2141.
  • 9Buchanan,R.A.;Stansbury,E.E.Fundamentals of coupled electrochemical reactions as related to microbially influenced corrosion[C]//Dowling,N.J.;Mittleman,M.W.;Danko,J.C.Microbially influenced corrosion and biodeterioration.Knoxville:TN,1991:5,33.
  • 10Videla,H.A.;de Mele,M.F.L.;Brankevich,G.J.Biofouling and corrosion of stainless steel and 70/30 copper nickel samples after several weeks of immersion in seawater[C]//Videla,H.NACE International,Houston,1989.

同被引文献194

引证文献14

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部