期刊文献+

多蚁群分级优化的多目标求解方法 被引量:3

New method for multi-objective optimization problem based on multi-ant-colony algorithm
下载PDF
导出
摘要 为提高多目标优化方法的求解性能,在给出了蚁群算法优化函数类问题求解方法的基础上,提出了基于多蚁群分级优化多目标问题的求解方法。构建了子蚁群以自身启发式信息及以其他子群的启发式信息获得准Pareto解以及采用各子群的每一只蚂蚁获得的准Pareto解作支配判断,从而提高Pareto解的多样性;构建了父蚁群以准Pareto解作为空间节点构成TSP类似的组合优化问题,其求解结果以获得多目标优化问题的Pareto解的前沿,从而提高Pareto解的均匀分布性。通过优化实例验证,结果表明,多蚁群分级优化的多目标求解方法所获得的Pareto解具有解的多样性以及解的均匀分布性。 In order to improve the solving performance of multi-objective optimization problem,this paper proposed a new method based on multi-ant-colony algorithms. Aiming to enhance the diversity of Pareto solutions,quasi-Pareto solutions were constructed by sub-ant-colony algorithm which adopted its own and other sub-ant-colony heuristic information and quasi-Pareto solutions obtained by every ant were used for control judgment. The constructed farther-group ants with the quasi-Pareto solutions which act as space nodes constitute TSP( traveling salesman problem) ,and then the solutions of the TSP act as the front of solutions for multi-objective optimization problem,hence lead to the enhancement of the uniform distribution of Pareto solutions. Experiment results show that the obtained Pareto solutions by multi-ant-colony optimization based on multi-classification methods have many advantages,such as the diversity and uniform distribution of solutions.
出处 《计算机应用研究》 CSCD 北大核心 2010年第10期3705-3707,3717,共4页 Application Research of Computers
基金 河南省自然科学基金资助项目(2010040818) 河南省教育厅青年骨干教师计划资助项目 河南省教育厅自然基础计划资助项目(2010A520034)
关键词 多蚁群算法 多目标优化 函数优化 动态距离调整 multi-ant-colony algorithm multi-objective optimization function optimization dynamic distance adjusting
  • 相关文献

参考文献11

二级参考文献97

共引文献78

同被引文献36

  • 1寿涌毅.多项目资源配置的拉格朗日分解方法[J].数量经济技术经济研究,2004,21(8):98-102. 被引量:14
  • 2刘自发,葛少云,余贻鑫.一种混合智能算法在配电网络重构中的应用[J].中国电机工程学报,2005,25(15):73-78. 被引量:80
  • 3王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2002..
  • 4Mendesa J J M, Gonclvesb J F, Resendec M G C. A random key based genetic algorithm for the resource constrained project scheduling problem [ J ]. Computers & Operations Research, 2009, 36(1) :92-109.
  • 5Vicente Vails, Francisco Ballestin, Sacramento Quintanilla. A hybrid genetic algorithm for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 2008,185 (2) :495-508.
  • 6Hartmann S. A self-adapting genetic algorithm for project scheduling under resource constraints [ J ]. Naval Research Logistics, 2002,49(5) :433-448.
  • 7Jirachai Buddhakulsomsiri, David S Kim. Priority rule-based heuristic for multi-mode esource-constrained project scheduling problems with resource vacations and activity splitting [J]. European Journal of Operational Research, 2007,178 (2) : 374-390.
  • 8Kolisch R, Hartmann S. Experimental evaluation of heuristics for the resource constrained project scheduling: An up-date [ J ]. European Journal of Operational Research, 2006,174( 1 ) : 23-47.
  • 9Yazdani M, Amiri M, Zandieh M. Flexible job-shop scheduling with parallel variable neighborhood search algorithm [J]. Expert Systems with Applications, 2010,37(1) :678-687.
  • 10Xu Ningxiong, Sally A McKee, Linda K Nozicka, et al. Augmenting priority rule heuristics with justification and rollout to solve the resource-constrained project scheduling problem [J]. Computers & Operations Research, 2008,35 (10) :3284-3297.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部