期刊文献+

给体-受体-给体窄带隙染料掺杂聚芴发光二极管 被引量:2

Donor-acceptor-donor Type Narrow-band-gap Dyes Doped Polyfluorene Light Emitting Diodes
下载PDF
导出
摘要 合成了一系列给体-受体-给体型窄带隙荧光分子,并将其作为掺杂剂与主体(Host)宽带隙聚芴共混制备发光二极管.荧光分子为4,7-二呋喃-苯并噻二唑(O-S)、4,7-二噻吩-苯并噻二唑(S-S)、4,7-二(N-甲基吡咯)-苯并噻二唑(N-S)、4,7-二硒吩-苯并噻二唑(Se-S)和4,7-二(N-甲基吡咯)-苯并硒二唑(N-Se).溶液中荧光分子的紫外-可见吸收峰位于447~472nm,荧光发射峰位于563~637nm.该系列荧光分子掺杂聚芴(PFO)发光器件的电致发光峰位于580~633nm.当器件结构为ITO/PEDOT/PVK/PFO+N-Se/Ba/Al时,最大外量子效率为1.28%,电流效率1.31cd/A. A series of donor-acceptor-donor(DAD) type narrow-band-gap fluorescent organic dyes were used as dopants for polymer light emitting diodes.The solutions of the organic molecules show absorbance peaks between 447 and 472 nm.The optical band gap decreases in the order:O-S and S-S N-S Se-S N-Se.The PL emission peak is around 563—637 nm depending on chemical structure.Energy transfer from polyfluorene to fluorescent organic dyes was observed for both photoluminescence and electroluminescence(EL) of the fluorescent dyes and polyfluorene composite film.The EL peak red shifted in the order are O-S,S-S,N-S,Se-S and N-Se,which agree with the optical band gap.The highest external quantum efficiency achieved with the device configuration ITO/PEDOT/PVK/PFO + N-Se/Ba/Al is 1.28% with luminous efficiency 1.31 cd/A peaked at 633 nm.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2010年第10期2098-2101,共4页 Chemical Journal of Chinese Universities
基金 国家"九七三"计划项目(批准号:2009CB623600) 国家自然科学基金(批准号:50903078 50990065) 山东省中青年科学家奖励基金(批准号:BS2009CL036) 教育部博士点新教师基金(批准号:20090132120017)资助
关键词 给体-受体-给体 窄带隙 掺杂 发光二极管 Donor-acceptor-donor Narrow-band-gap Dopant Light emitting diodes
  • 相关文献

参考文献14

二级参考文献74

共引文献5

同被引文献58

  • 1Service, R F. Outlook Brightens for Plastic Solar Cells [ J]. Sci ,2011,332,293.
  • 2Chun D, Cuihong L, Zhishan B, et al. 9-Alkylidene-9H- Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells[ J]. Macromoles 2011 ,d4,7617-7624.
  • 3Song J, Zhang C, Li C, et al. Conjugated polymers with broad absorption:Synthesis and application in polymer so- lar cells[J]. J P S. Part A:Polym. Chem. 2010,48,2571- 2578.
  • 4Bundgaard E. , Krebs F. C. Low band gap polymers for or- ganic photovoltaics [ J ]. Sol. Energy Mater. Sol. Cells, 2007,91,954-985.
  • 5Li Weiwei,Zhou Yi, B. V. Andersson. et al. The Effect of additive on performance and shelf-stability of HSX-I/ PCBM photovohaic devices [ J ]. Org. Electron. 2011,12, 1544-1551.
  • 6Son Hae Jung, He Feng, Yu Luping, et al. Are we there yet.'? Design of better conjugated polymers for polymer so- lar ceils[ J]. J. Mater. Chem. 2011,21 , 18934-18945.
  • 7Qin Ruiping, Bo Zhishan. 2, 7-Livked Carbazole Oli- gomers: Synthesis and Structure-Property Relationships [J]. Macromol. Rapid Commun. 2012.33( 1 ) ,87-91.
  • 8Wang Ming, Li Cuihong, Lv Aifeng,et al. Spirobifluorene- Based Conjugated Polymers for Polymer Solar Cells withHigh Open-Circuit Voltage [ J ]. Macromol,2012,45 (7), 3017-3022.
  • 9Bridget C, JodiM. S, Son Hae Jung, et al. Examining the Effect of the Dipole Moment on Charge Separation in Donor-Aeeeptor Polymers for Organic Photovoltaie Ap- plications [ J ]. .Am. Chem. Soc, 2011, 133, 20468- 20475.
  • 10Ian P. Murray, Sylvia J. Lou, Laura J, Cote. et al. Gra- phene Oxide Intedayers for Robust, High-Effieiency Or- ganic Photovoltaies [ J ]. J. Phys. Chem. Lett. 2011,2, 3006-3012.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部