期刊文献+

二度体的重力张量有限元正演模拟 被引量:16

FINITE ELEMENT FORWARD SIMULATION OF THE TWO-DIMENSIONAL GRAVITY GRADIENT TENSOR
下载PDF
导出
摘要 介绍了重力梯度张量,并将有限单元法应用于二维重力梯度张量的正演计算。为了验证有限元正演方法的精度,对截面为矩形的两个二度体组合模型进行有限元正演模拟,结果表明正演曲线与理论曲线形态一致,拟合情况好。通过对截面形状不规则、密度分块均匀的二度体进行正演模拟,说明有限元法可通过网格剖分来逼近不规则目标体的边界,并对剖分单元赋予不同的密度值来实现对复杂二度体的重力张量的正演模拟。 Gravity gradient tensor was introduced in this study,and the finite element method was applied to the two-dimensional gravity gradient tensor forward.In order to prove the correctness of the finite element method,the authors comparatively studied the forward result and analytical solution of a two-dimensional body whose cross section is the combination of two rectangles.It can be seen that the forward result is well consistent with the FEM numerical solution.Through forwarding the two-dimensional body which has irregular cross section and homogeneous density in each element,the authors have concluded that the complex two-dimensional body can be forwarded by mesh generation to approximate irregular borders and by assigning different densities to different elements.
出处 《物探与化探》 CAS CSCD 北大核心 2010年第5期668-671,685,共5页 Geophysical and Geochemical Exploration
关键词 复杂二度体 重力张量 有限元 正演模拟 complex two-dimensional body gravity gradient tensor finite element method forward simulation
  • 相关文献

参考文献12

  • 1Zhang C,Mushayandebvu M F,Reid A B,et al.Euler deconvolution of gravity tensor gradient data[J].Geophysics,2000,65:512.
  • 2Zhdanov M S,Ellis R,Mukherjee S.Three-dimensional regularized focusing inversion of gravity gradient tensor component data[J].Geophysics,2004,69:925.
  • 3Lyrio J,Tenorio L,Li Y.Efficient automatic denoising of gravity gradiometry data[J].Geophysics,2004,69:772.
  • 4While J,Jackson A,Smit D,et al.Spectral analysis of gravity gradiometry profiles[J].Geophysics,2006,71(1):11.
  • 5Mickus K L,Hinojosa J R.The complete gravity gradient tensor derived from the vertical component of gravity:a Fourier transform technique[J].Journal of Applied Geophysics,2001,46:159.
  • 6杨辉,王宜昌.复杂形体重力异常高阶导数的正演计算[J].石油地球物理勘探,1998,33(2):278-283. 被引量:10
  • 7汪炳柱.用样条函数法求重力异常二阶垂向导数和向上延拓计算[J].石油地球物理勘探,1996,31(3):415-422. 被引量:14
  • 8张凤旭,孟令顺,张凤琴,刘财,吴艳冈,杜晓娟.重力位谱分析及重力异常导数换算新方法——余弦变换[J].地球物理学报,2006,49(1):244-248. 被引量:49
  • 9蔡永恩 王其允.有限元方法计算重力异常的新边界条件.大地测量与地球动力学进展,2004,:470-470.
  • 10蔡永恩,王奇允,张健,等,用有限单元法计算不均匀密度地区的重力异常[C] //中国地球物理2003:中国地球物理学会第十九届年会论文集.2003;640.

二级参考文献14

  • 1刘保华,张维冈,孟恩.重力异常垂向一阶导数的一种简便算法[J].青岛海洋大学学报(自然科学版),1995,25(2):233-238. 被引量:6
  • 2汪炳柱,王硕儒.二维密度界面正反演的样条函数法[J].石油地球物理勘探,1995,30(2):230-239. 被引量:6
  • 3汪炳柱.用样条函数法求重力异常二阶垂向导数和向上延拓计算[J].石油地球物理勘探,1996,31(3):415-422. 被引量:14
  • 4Kevin L Michus,Juan Homero Hinojosa.The complete gravity gradient tensor derived from the vertical component of gravity:A Fourier transform technique.Journal of Applied Geophysics,2001,46:159-174.
  • 5Lourenco J S,Morrison H F.Vector magnetic anomalies derived from measurements of single component of the field.Geophysics,1973,38:395-368.
  • 6Ahmed N T,Natarajan T,Rao K R.Discrete cosine transform.IEEE Trans.Comput,1974,23(1):90-93.
  • 7Rao K R,Yip P.Discrete Cosine Transfrom:Algorithms,Advantages and Applications.New York:Academic Press,1990.
  • 8Dinstein I,Rose K,Heiman A.Variable block-size transform image coder.IEEE Tans.Comm,1990,38(11):2073-2078.
  • 9Cvetkovic Z,Popovic M V.New fast algorithms for the computation disctete cosine and sine transform.IEEE Trans.Signal Process,1992,40(8):2083-2086.
  • 10Vladimír Britanak.A unified discrete cosine and discrete sine transform computation.Signal Processing,1995,43:333-339.

共引文献63

同被引文献222

引证文献16

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部