期刊文献+

券商集合理财产品定价问题研究 被引量:2

Pricing of Security Investment Products
下载PDF
导出
摘要 基于Black-Scholes期权定价模型,用偏微分方程方法,研究其定价和性质.通过对冲技巧及It公式,在双因子模型下,建立了具提前转开条款的券商集合理财产品的定价模型,用差分方法得到了定价的数值解.通过固定封闭期模型与一般转开模型的比较,分析了转开条款带来的流动性价值.最后,利用理论结果,对实际产品——光大阳光集合理财产品进行实证分析,并讨论模型在定价中的作用及局限. Based on Black-Scholes Model,the pricing of SIPs was investigated with PDE method.With the double-factor model,a pricing model for the SIPs was established with an earlier exercise condition according to hedging techniques and Ito Lemma.And the numerical solution was obtained with the difference method.The value of the liquidity was analyzed by comparing the models with or without the early open condition.Finally,a case study was made of Guangda SIP.The roles the model in pricing and its limits were discussed as well.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第10期1550-1555,共6页 Journal of Tongji University:Natural Science
基金 国家"九七三"重点基础研究发展计划资助项目(2007CB814903)
关键词 券商集合理财 保底条款 提前转开 偏微分方程 BLACK-SCHOLES模型 security investment products guarantee clause early exercise condition partial differential equation Black-Scholes model
  • 相关文献

参考文献10

  • 1光大证券股份有限公司.光大阳光集合资产管理计划说明书[EB/OL].E2005-03-15].http://www.ebscn.com/gdyg/djxz-cornmon.asp.
  • 2任学敏,李少华.保底型基金的设计与定价[J].系统工程理论与实践,2005,25(9):22-28. 被引量:7
  • 3姜礼尚,徐承龙,任学敏,等.金融衍生产品的数学模型和案例分析[M].北京:高等教育出版社,2008.
  • 4Richard J Haber, Philipp J Schonbucher, Paul Wilmott. Pricing parisian options[J].Journal of Derivatives, 1999,6(3) : 71.
  • 5Paul Wilmott. Derivatives the theory and practice of financial engineering[J]. New York: John Wiley & Sons, 1998.
  • 6罗俊,吴雄华.巴黎期权定价问题的数值方法[J].数值计算与计算机应用,2004,25(2):81-89. 被引量:6
  • 7Bernard C,Courtois O, Onittard-pinon F. A new procedure for pricing parisian [J]. The Journal of Derivatives, 2005, 12 (4) :45.
  • 8John C Hull. Options futures and other derivatives[M]. 4th ed. Beijing: Tsinghua University Press.
  • 9Jiang L S. Mathematical modeling and methods of option pricing [M].Singapore: World Scientific Publishing, 2005.
  • 10Oldrich Vasicek. An equilibrium characterization of term structure[J]. Journal of Financial Economics, 1977,5:177.

二级参考文献9

  • 1Paul Wilmott, Derivatives-The Theory and Practice of Financial Engineering, John Wiley & Sons Ltd., England, (1998).
  • 2K.R. Vetzal and P.A. Forsyth , Discrete Parision and Delayed Barrier Options: A General Numerical Approach (1998).
  • 3Wu xionghua, Tan zhihai, Numerical Method with High-Order Accuracy for a kind of Nonlinear Singular Perturbation Problems, Chinese Journal of Numerical Mathematics and Applications,22:1 (2000) 17-21.
  • 4Y-K, Kwok, Mathematical Methods of Finacial Derivatives, Springer-Verlag, (1998).
  • 5Wilmott p., Pricing parision options, J.of Derivatives, 6:3 (1999) 71-79.
  • 6Youlan Zhu, Yingjun Sun, The singularity-separating method for two-factor convertible bonds, J.of Computational Finance, 3:1 (1999) 91-110.
  • 7Jiang, L, Dai, M., Convergeuce of binomial tree method for American options, In: Proceeding of the conference on P.D.E. and their applications, World Scientific, Singapore. 1999, 106, 118.
  • 8JohnC.Hull Options Futures and Other Derivatives[M].Fourth Edition[M].北京清华大学出版社,.498-508.
  • 9Campbell J Y. A defense of traditional hypotheses about the term structure of interest rates[Jl . The journal of Finance41, 1986,183- 193.

共引文献11

同被引文献30

  • 1陈瑜,王尔刚.限定性券商集合资产管理计划的定价和分析[J].统计与咨询,2009(5):16-17. 被引量:2
  • 2张永鹏,陈华.信息不对称情况下基金管理人的最优激励合同[J].系统工程理论方法应用,2004,13(5):443-446. 被引量:14
  • 3F BLACK, M SCHOLES. The pricing of options and corpo-rate liabilities [J]. The Journal of Economics, 1973,89(2/3): 283 — 301.
  • 4W N GOETZMANN, J E INGERSOLL, S A ROSS. High-water marks and hedge fund management contracts [J]. Jour-nal of Finance, 2003,58(4): 1685一1717.
  • 5D D SONG, J Q YANG* Z J YANG. High-water marks andhedge fund management contracts with partial information[J]. Computational Economics, 2012,Forthcoming.
  • 6M N SORENSEN. WANG, J Q YANG. Valuing private equi-ty[R]. New York: Columbia University and Shanghai Univer-sity of Finance and Economics ,2011.
  • 7M GRINBLATT, S TITMAN. Adverse risk incentive and thedesign of performance-based contracts [J]. Management Sci-ence ,1989, 35(7) : 807_822.
  • 8J N CARPENTER. Does option compensation increase manag-erial risk appetite. [J]. The Journal of Finance, 2000,21(5):2311-2331.
  • 9S A ROSS. Compensation, incentive and the duality of risk a-version and riskiness [J]. Journal of Finance, 2004,59(1):207-225.
  • 10S PANAGEAS, M M WESTERFIELD. High-water marks:high risk appetites. convex compensation,long horizons, andportfolio choice [J]. Journal of Finance,2009,64(1) : 1 — 36.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部